71 research outputs found

    Bulge-to-disk decomposition of large galaxies in the Sloan Digital Sky Survey

    Get PDF
    Die moderne Astrophysik steht vor der Herausforderung, neueste Beobachtungen mit den theoretischen und numerischen Modellen der Galaxienentstehung und -entwicklung zu konfrontieren. So hofft man, die wichtigsten physikalischen Prozesse und ihre Zeitskalen identifizieren zu koennen. In dieser Arbeit nehmen wir eine komplette, helligkeits--limitierte Auswahl von 1862 Galaxien aus der Sloan Digital Sky Survey (SDSS), um eine Anzahl von globalen und strukturellen Parametern zu untersuchen. Diese Auswahl beinhaltet helle Objekte mit einer r--Band Helligkeit von < 15.9 im nahen Universum mit einer Rotverschiebung von z < 0.12. Sie enthaelt elliptische, Spiral- und irregulaere Galaxien. Photometrische Daten sind fuer die u, g, r, i und z--Baender angegeben und von 1588 Galaxien wurden nachtraeglich Spektra genommen. Die `Bulge' Komponente der Galaxien wird mit Sersic und de Vaucouleurs Modellen modelliert, waehrend die Scheibenkomponente mit einer exponentiellen Verteilung modelliert wird. Die Messung des Lichtanteils in `Bulge' und Scheibenkomponente gibt Aufschluss ueber die Effizienz des hierarchischen Strukturbildungsprozesses. In Kapitel 3 zeigen wir, dass der mittlere Anteil des Lichts aus der Scheibe stark mit der totalen absoluten Helligkeit der Galaxie zunimmt. Unabhaengige r und i Band Analysen ergeben einen sehr aehnlichen Trend. Zum ersten Mal schaetzen wir den volumengemittelten Anteil des Lichts aus der Scheibenkomponente von Galaxien ab und stellen fest, dass ungefaehr (55 +- 2) % des gesamten Lichts im lokalen Universum aus Scheiben kommt. Wir ermitteln auch die Leuchtkraftfunktion fuer reine 'Bulges', also fuer Strukturen ohne Scheibenanteil, die nicht einfache Spheroide sind. In Kapitel 4 studieren wir die Abhaengigkeiten von visuellen und quantitativen morphologischen Klassifikationskriterien mit dem Ziel sauberere Galaxienkataloge zu erstellen, besonders bei hohen Rotverschiebungen, wo die Klassifikation schwierig ist. Wir finden, dass Galaxienfarben, effektive Oberflaechenhelligkeit, Masse/Licht Anteil, und Asymmetrie Parameter einen Mehrparameter Raum aufspannen, in der alle Galaxien je nach morphologischem Typ eindeutig positioniert sind. In Kapitel 5 beobachten wir einen klaren Trend, mit dem die Skalenlaenge der Scheiben mit ihrer Helligkeit zunimmt, und dieser Trend ist unabhaengig vom photometrischen Band und der morphologischen Klasse. Es existiert auch eine klare Abhaengigkeit zwischen dem effektiven Radius des `Bulge' und seiner Helligkeit, aber die Steigung dieser Relation aendert sich mit dem morphologischem Typ. Sie ist steiler fuer fruehere Typus, was uns zu der Schlussfolgerung fuehrt, dass die Skalenlaenge weniger von der Morphologie abhaengt als die Skalenlaenge des `Bulges'. Dies legt nahe, dass `Bulges' in fruehen und spaeteren Galaxien in unterschiedlichen Prozessen gebildet werden. Wir finden auch eine Korrelation zwischen den strukturellen Parametern von Scheiben und `Bulges', insbesondere zwischen effektivem Radius der `Bulges' und der Skalenlaenge der Scheiben in Systemen fruehen Typus. Wir interpretieren dies als Beweisstueck zugunsten von saekularen Evolutionsmodellen

    The Dominant Role of Mergers in the Size Evolution of Massive Galaxies since z∼1

    Get PDF
    We estimate the merger rate, both major (stellar mass ratio μ = M★,_2/M★,_1 ≥ 1/4) and minor (1/10 ≤ μ < 1/4), of massive (M★ ≥ 10^(11) M☉) early-type galaxies (ETGs) in the COSMOS field by close pairs statistics. The merger rate of massive ETGs evolves as a power-law (1+z)^n, showing the minor merger little evolution with redshift, n_(mm) ∼ 0, in contrast with the increase of major mergers, n_(MM) = 1.8. Our results shows that massive ETGs have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ∼ 1, leading to a mass growth of ∼ 30%. In addition, μ ≥ 1/10 mergers can explain ∼ 55% of the observed size evolution of these galaxies since z ∼ 1. Another ∼ 20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (μ < 1/10) could contribute with an extra ∼ 20%. The remaining ∼ 5% should come from other processes (e.g., adiabatic expansion or observational effects). These results suggest that mergers are the main contributor to the size evolution of massive ETGs, accounting for ∼ 55%–75% of that evolution in the last 8 Gyr. Nearly half of this merging evolution is related with minor (μ < 1/4) events

    Pixel-z: Studying Substructure and Stellar Populations in Galaxies out to z~3 using Pixel Colors I. Systematics

    Full text link
    We perform a pixel-by-pixel analysis of 467 galaxies in the GOODS-VIMOS survey to study systematic effects in extracting properties of stellar populations (age, dust, metallicity and SFR) from pixel colors using the pixel-z method. The systematics studied include the effect of the input stellar population synthesis model, passband limitations and differences between individual SED fits to pixels and global SED-fitting to a galaxy's colors. We find that with optical-only colors, the systematic errors due to differences among the models are well constrained. The largest impact on the age and SFR e-folding time estimates in the pixels arises from differences between the Maraston models and the Bruzual&Charlot models, when optical colors are used. This results in systematic differences larger than the 2{\sigma} uncertainties in over 10 percent of all pixels in the galaxy sample. The effect of restricting the available passbands is more severe. In 26 percent of pixels in the full sample, passband limitations result in systematic biases in the age estimates which are larger than the 2{\sigma} uncertainties. Systematic effects from model differences are reexamined using Near-IR colors for a subsample of 46 galaxies in the GOODS-NICMOS survey. For z > 1, the observed optical/NIR colors span the rest frame UV-optical SED, and the use of different models does not significantly bias the estimates of the stellar population parameters compared to using optical-only colors. We then illustrate how pixel-z can be applied robustly to make detailed studies of substructure in high redshift galaxies such as (a) radial gradients of age, SFR, sSFR and dust and (b) the distribution of these properties within subcomponents such as spiral arms and clumps. Finally, we show preliminary results from the CANDELS survey illustrating how the new HST/WFC3 data can be exploited to probe substructure in z~1-3 galaxies.Comment: 37 pages, 21 figures, submitted to Ap

    The EFIGI catalogue of 4458 nearby galaxies with detailed morphology

    Get PDF
    Accepted for publication in Astronomy and Astrophysics, 27 pages, 7 tables, 32 colour figures. Data available at http://www.efigi.orgInternational audienceNow that large databases of resolved galaxy images are provided by modern imaging surveys, advanced morphological studies can be envisioned, urging for well defined calibration samples. We present the EFIGI catalogue, a multiwavelength database specifically designed for a dense sampling of all Hubble types. The catalogue merges data from standard surveys and catalogues (Principal Galaxy Catalogue, Sloan Digital Sky Survey, Value-Added Galaxy Catalogue, HyperLeda, and the NASA Extragalactic Database) and provides detailed morphological information. Imaging data are obtained from the SDSS DR4 in the u, g, r, i, and z bands for a sample of 4458 PGC galaxies, whereas photometric and spectroscopic data are obtained from the SDSS DR5 catalogue. Point-Spread Function models are derived in all five bands. Composite colour images of all objects are visually examined by a group of astronomers, and galaxies are staged along the Hubble sequence and classified according to 16 morphological attributes describing their structure, texture, as well as environment and appearance on a five-level scale. The EFIGI Hubble sequence shows remarkable agreement with the RC3 Revised Hubble Sequence. The main characteristics and reliability of the catalogue are examined, including photometric completeness, type mix, systematic trends and correlations. The final EFIGI database is a large sub-sample of the local Universe, with a dense sampling of Sd, Sdm, Sm and Im types compared to magnitude-limited catalogues. We estimate the photometric catalogue to be more than ~ 80% complete for galaxies with 10 < g < 14. More than 99.5% of EFIGI galaxies have a known redshift in the HyperLeda and NED databases

    ALMA reveals the molecular gas properties of five star-forming galaxies across the main sequence at 3

    Get PDF
    International audienceWe present the detection of CO(5-4) with S/N> 7 - 13 and a lower CO transition with S/N > 3 (CO(4-3) for 4 galaxies, and CO(3-2) for one) with ALMA in band 3 and 4 in five main sequence star-forming galaxies with stellar masses 3-6x10^10 M/M_sun at 3 < z < 3.5. We find a good correlation between the total far-infrared luminosity LFIR and the luminosity of the CO(5-4) transition L'CO(5-4), where L'CO(5-4) increases with SFR, indicating that CO(5-4) is a good tracer of the obscured SFR in these galaxies. The two galaxies that lie closer to the star-forming main sequence have CO SLED slopes that are comparable to other star-forming populations, such as local SMGs and BzK star-forming galaxies; the three objects with higher specific star formation rates (sSFR) have far steeper CO SLEDs, which possibly indicates a more concentrated episode of star formation. By exploiting the CO SLED slopes to extrapolate the luminosity of the CO(1-0) transition, and using a classical conversion factor for main sequence galaxies of alpha_CO = 3.8 M_sun(K km s^-1 pc^-2)^-1, we find that these galaxies are very gas rich, with molecular gas fractions between 60 and 80%, and quite long depletion times, between 0.2 and 1 Gyr. Finally, we obtain dynamical masses that are comparable with the sum of stellar and gas mass (at least for four out of five galaxies), allowing us to put a first constraint on the alpha_CO parameter for main sequence galaxies at an unprecedented redshift

    Discovery of Massive, Mostly Star-formation Quenched Galaxies with Extremely Large Lyman-alpha Equivalent Widths at z ~ 3

    Get PDF
    We report a discovery of 6 massive galaxies with both extremely large Lya equivalent width and evolved stellar population at z ~ 3. These MAssive Extremely STrong Lya emitting Objects (MAESTLOs) have been discovered in our large-volume systematic survey for strong Lya emitters (LAEs) with twelve optical intermediate-band data taken with Subaru/Suprime-Cam in the COSMOS field. Based on the SED fitting analysis for these LAEs, it is found that these MAESTLOs have (1) large rest-frame equivalent width of EW_0(Lya) ~ 100--300 A, (2) M_star ~ 10^10.5--10^11.1 M_sun, and (3) relatively low specific star formation rates of SFR/M_star ~ 0.03--1 Gyr^-1. Three of the 6 MAESTLOs have extended Lyα\alpha emission with a radius of several kpc although they show very compact morphology in the HST/ACS images, which correspond to the rest-frame UV continuum. Since the MAESTLOs do not show any evidence for AGNs, the observed extended Lya emission is likely to be caused by star formation process including the superwind activity. We suggest that this new class of LAEs, MAESTLOs, provides a missing link from star-forming to passively evolving galaxies at the peak era of the cosmic star-formation history.Comment: Accepted for publication in ApJ Letters on 15th July, 2015. 6 pages including 3 figures and 2 table

    An ALMA survey of submillimetre galaxies in the COSMOS field: The extent of the radio-emitting region revealed by 3 GHz imaging with the Very Large Array

    Get PDF
    We determine the radio size distribution of a large sample of 152 SMGs in COSMOS that were detected with ALMA at 1.3 mm. For this purpose, we used the observations taken by the VLA-COSMOS 3 GHz Large Project. One hundred and fifteen of the 152 target SMGs were found to have a 3 GHz counterpart. The median value of the major axis FWHM at 3 GHz is derived to be 4.6±0.44.6\pm0.4 kpc. The radio sizes show no evolutionary trend with redshift, or difference between different galaxy morphologies. We also derived the spectral indices between 1.4 and 3 GHz, and 3 GHz brightness temperatures for the sources, and the median values were found to be α=0.67\alpha=-0.67 and TB=12.6±2T_{\rm B}=12.6\pm2 K. Three of the target SMGs, which are also detected with the VLBA, show clearly higher brightness temperatures than the typical values. Although the observed radio emission appears to be predominantly powered by star formation and supernova activity, our results provide a strong indication of the presence of an AGN in the VLBA and X-ray-detected SMG AzTEC/C61. The median radio-emitting size we have derived is 1.5-3 times larger than the typical FIR dust-emitting sizes of SMGs, but similar to that of the SMGs' molecular gas component traced through mid-JJ line emission of CO. The physical conditions of SMGs probably render the diffusion of cosmic-ray electrons inefficient, and hence an unlikely process to lead to the observed extended radio sizes. Instead, our results point towards a scenario where SMGs are driven by galaxy interactions and mergers. Besides triggering vigorous starbursts, galaxy collisions can also pull out the magnetised fluids from the interacting disks, and give rise to a taffy-like synchrotron-emitting bridge. This provides an explanation for the spatially extended radio emission of SMGs, and can also cause a deviation from the well-known IR-radio correlation.Comment: 32 pages (incl. 5 appendices), 17 figures, 7 tables; accepted for publication in A&A; abstract abridged for arXi

    The zCOSMOS 10k-Bright Spectroscopic Sample

    Get PDF
    We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed

    Lyman-alpha Forest Tomography from Background Galaxies: The First Megaparsec-Resolution Large-Scale Structure Map at z>2

    Get PDF
    We present the first observations of foreground Lyman-α\alpha forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with z2.32.8z\sim 2.3-2.8 within a 5×155' \times 15' region of the COSMOS field. The transverse sightline separation is 2h1Mpc\sim 2\,h^{-1}\mathrm{Mpc} comoving, allowing us to create a tomographic reconstruction of the 3D Lyα\alpha forest absorption field over the redshift range 2.20z2.452.20\leq z\leq 2.45. The resulting map covers 6h1Mpc×14h1Mpc6\,h^{-1}\mathrm{Mpc} \times 14\,h^{-1}\mathrm{Mpc} in the transverse plane and 230h1Mpc230\,h^{-1}\mathrm{Mpc} along the line-of-sight with a spatial resolution of 3.5h1Mpc\approx 3.5\,h^{-1}\mathrm{Mpc}, and is the first high-fidelity map of large-scale structure on Mpc\sim\mathrm{Mpc} scales at z>2z>2. Our map reveals significant structures with 10h1Mpc\gtrsim 10\,h^{-1}\mathrm{Mpc} extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume enabling a direct comparison to our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establishes the feasibility of the CLAMATO survey, which aims to obtain Lyα\alpha forest spectra for 1000\sim 1000 SFGs over 1deg2\sim 1 \,\mathrm{deg}^2 of the COSMOS field, in order to map out IGM large-scale structure at z2.3\langle z \rangle \sim 2.3 over a large volume (100h1Mpc)3(100\,h^{-1}\mathrm{Mpc})^3.Comment: Accepted for publication in Astrophysical Journal Letters; 8 pages and 5 figure

    Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements

    Get PDF
    With a primary goal of conducting precision weak-lensing measurements from space, the COSMOS survey has imaged the largest contiguous area observed by Hubble Space Telescope to date, using the Advanced Camera for Surveys (ACS). This is the first paper in a series in which we describe our strategy for addressing the various technical challenges in the production of weak-lensing measurements from COSMOS data. We first construct a source catalog from 575 ACS/WFC tiles (1.64 deg^2) subsampled at a pixel scale of 0.03". Defects and diffraction spikes are carefully removed, leaving a total of 1.2 × 10^6 objects to a limiting magnitude of F814W = 26.5. This catalog is made publicly available. Multiwavelength follow-up observations of the COSMOS field provide photometric redshifts for 73% of the source galaxies in the lensing catalog. We analyze and discuss the COSMOS redshift distribution and show broad agreement with other surveys to z ~ 1. Our next step is to measure the shapes of galaxies and correct them for the distortion induced by the time-varying ACS point-spread function and for charge transfer efficiency (CTE) effects. Simulated images are used to derive the shear susceptibility factors that are necessary in transforming shape measurements into unbiased shear estimators. For every galaxy we derive a shape measurement error and utilize this quantity to extract the intrinsic shape noise of the galaxy sample. Interestingly, our results indicate that intrinsic shape noise varies little with size, magnitude, or redshift. Representing a number density of 66 galaxies per arcmin^2, the final COSMOS weak-lensing catalog contains 3.9 × 10^5 galaxies with accurate shape measurements. The properties of the COSMOS weak-lensing catalog described throughout this paper will provide key input numbers for the preparation and design of next-generation wide field space missions
    corecore