72 research outputs found
The Whereabouts of 2D Gels in Quantitative Proteomics
Two-dimensional gel electrophoresis has been instrumental in the development
of proteomics. Although it is no longer the exclusive scheme used for
proteomics, its unique features make it a still highly valuable tool,
especially when multiple quantitative comparisons of samples must be made, and
even for large samples series. However, quantitative proteomics using 2D gels
is critically dependent on the performances of the protein detection methods
used after the electrophoretic separations. This chapter therefore examines
critically the various detection methods (radioactivity, dyes, fluorescence,
and silver) as well as the data analysis issues that must be taken into account
when quantitative comparative analysis of 2D gels is performed
Six pelagic seabird species of the North Atlantic engage in a fly-and-forage strategy during their migratory movements
Funding Information: We thank all the fieldworkers for their hard work collecting data. Funding for this study was provided by the Norwegian Ministry for Climate and the Environment, the Norwegian Ministry of Foreign Affairs and the Norwegian Oil and Gas Association along with 8 oil companies through the SEATRACK project (www. seapop. no/ en/ seatrack). Fieldwork in Norwegian colonies (incl. Svalbard and Jan Mayen) was supported by the SEAPOP program (www.seapop.no, grant no. 192141). The French Polar Institute (IPEV project 330 to O.C.) supported field operation for Kongsfjord kittiwakes. The work on the Isle of May was also supported by the Natural Environment Research Council (Award NE/R016429/1 as part of the UK-SCaPE programme delivering National Capability). We thank Maria Bogdanova for field support and data processing. Finally, we thank 3 anonymous reviewers for their help improving the first version of the manuscript.Peer reviewedPublisher PD
Intrapopulation Variability Shaping Isotope Discrimination and Turnover: Experimental Evidence in Arctic Foxes
Tissue-specific stable isotope signatures can provide insights into the trophic ecology of consumers and their roles in food webs. Two parameters are central for making valid inferences based on stable isotopes, isotopic discrimination (difference in isotopic ratio between consumer and its diet) and turnover time (renewal process of molecules in a given tissue usually measured when half of the tissue composition has changed). We investigated simultaneously the effects of age, sex, and diet types on the variation of discrimination and half-life in nitrogen and carbon stable isotopes (ÎŽ15N and ÎŽ13C, respectively) in five tissues (blood cells, plasma, muscle, liver, nail, and hair) of a top predator, the arctic fox Vulpes lagopus. We fed 40 farmed foxes (equal numbers of adults and yearlings of both sexes) with diet capturing the range of resources used by their wild counterparts. We found that, for a single species, six tissues, and three diet types, the range of discrimination values can be almost as large as what is known at the scale of the whole mammalian or avian class. Discrimination varied depending on sex, age, tissue, and diet types, ranging from 0.3â° to 5.3â° (mean = 2.6â°) for ÎŽ15N and from 0.2â° to 2.9â° (mean = 0.9â°) for ÎŽ13C. We also found an impact of population structure on ÎŽ15N half-life in blood cells. Varying across individuals, ÎŽ15N half-life in plasma (6 to 10 days) was also shorter than for ÎŽ13C (14 to 22 days), though ÎŽ15N and ÎŽ13C half-lives are usually considered as equal. Overall, our multi-factorial experiment revealed that at least six levels of isotopic variations could co-occur in the same population. Our experimental analysis provides a framework for quantifying multiple sources of variation in isotopic discrimination and half-life that needs to be taken into account when designing and analysing ecological field studies
The retrospective analysis of Antarctic tracking data project
The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information
System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations
The state of the art in the analysis of two-dimensional gel electrophoresis images
Software-based image analysis is a crucial step in the biological interpretation of two-dimensional gel electrophoresis experiments. Recent significant advances in image processing methods combined with powerful computing hardware have enabled the routine analysis of large experiments. We cover the process starting with the imaging of 2-D gels, quantitation of spots, creation of expression profiles to statistical expression analysis followed by the presentation of results. Challenges for analysis software as well as good practices are highlighted. We emphasize image warping and related methods that are able to overcome the difficulties that are due to varying migration positions of spots between gels. Spot detection, quantitation, normalization, and the creation of expression profiles are described in detail. The recent development of consensus spot patterns and complete expression profiles enables one to take full advantage of statistical methods for expression analysis that are well established for the analysis of DNA microarray experiments. We close with an overview of visualization and presentation methods (proteome maps) and current challenges in the field
The retrospective analysis of Antarctic tracking data project
The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for
Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and
Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of
Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species
of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These
datasets and accompanying syntheses provide a greater understanding of fundamental
ecosystem processes in the Southern Ocean, support modelling of predator distributions
under future climate scenarios and create inputs that can be incorporated into decision
making processes by management authorities. In this data paper, we present the compiled
tracking data from research groups that have worked in the Antarctic since the 1990s. The
data are publicly available through biodiversity.aq and the Ocean Biogeographic Information
System. The archive includes tracking data from over 70 contributors across 12 national
Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and
over 2.9 million observed locations.Supplementary Figure S1: Filtered location data (black) and tag deployment locations (red) for each species.
Maps are Lambert Azimuthal projections extending from 90° S to 20° S.Supplementary Table S1: Names and coordinates of the major study sites in the Southern Ocean and on the Antarctic Continent where tracking devices were deployed on the selected species (indicated by their 4-letter codes in the last column).Online Table 1: Description of fields (column names) in the metadata and data files.Supranational committees and organisations including the Scientific Committee on Antarctic Research Life Science Group and BirdLife International. National institutions and foundations, including but not limited to Argentina (DirecciĂłn Nacional del AntĂĄrtico), Australia (Australian Antarctic program; Australian Research Council; Sea World Research and Rescue Foundation Inc., IMOS is a national collaborative research infrastructure, supported by the Australian Government and operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent), Belgium (Belgian Science Policy Office, EU Lifewatch ERIC), Brazil (Brazilian Antarctic Programme; Brazilian National Research Council (CNPq/MCTI) and CAPES), France (Agence Nationale de la Recherche; Centre National dâEtudes Spatiales; Centre National de la Recherche Scientifique; the French Foundation for Research on Biodiversity (FRB; www.fondationbiodiversite.fr) in the context of the CESAB project âRAATDâ; Fondation Total; Institut Paul-Emile Victor; Programme Zone Atelier de Recherches sur lâEnvironnement Antarctique et Subantarctique; Terres Australes et Antarctiques Françaises), Germany (Deutsche Forschungsgemeinschaft, Hanse-Wissenschaftskolleg - Institute for Advanced Study), Italy (Italian National Antarctic Research Program; Ministry for Education University and Research), Japan (Japanese Antarctic Research Expedition; JSPS Kakenhi grant), Monaco (Fondation Prince Albert II de Monaco), New Zealand (Ministry for Primary Industries - BRAG; Pew Charitable Trusts), Norway (Norwegian Antarctic Research Expeditions; Norwegian Research Council), Portugal (Foundation for Science and Technology), South Africa (Department of Environmental Affairs; National Research Foundation; South African National Antarctic Programme), UK (Darwin Plus; Ecosystems Programme at the British Antarctic Survey; Natural Environment Research Council; WWF), and USA (U.S. AMLR Program of NOAA Fisheries; US Office of Polar Programs).http://www.nature.com/sdataam2021Mammal Research Institut
Population-specific wintering distributions of adult south polar skuas over three oceans
International audienceMigratory routes and the areas used during winter have probably been selected tomaximize fitness by providing favorable environmental conditions outside the breeding season. Inpolar environments, because of the extreme winter weather, most breeding species migrate toencounter better conditions in areas that can differ between and also within species. Using geo -location sensors, we found that south polar skuas Catharacta maccormicki from 2 distant populationsbreeding on the Antarctic continent along the Atlantic and Indian Oceans migrate northwardto winter in tropical Indian Ocean and in temperate North Pacific waters, respectively. Mostindividuals from each population winter in different environmental conditions, with water temperaturesranging from 16 to 29°C. Nevertheless, they have very similar activity patterns, spendingmore than 80% of their time on the water, and their feather Ύ15N values suggest that they probablyfeed at similar trophic levels during the molt. During overwintering, the overall and constant lowactivity level may be partly imposed by molting constraints, but it also suggests that trophic conditionsare good for skuas. The wintering areas of the species correspond to sectors of high concentrationsof breeding or wintering tropical, Northern, and Southern Hemisphere seabird speciesthat are likely to be kleptoparasitized by skuas. A certain degree of individual variation existswithin each population, which induces a spatial overlap in the wintering grounds of distant breedingpopulations. These results have potential important consequences in terms of fitness, geneticdivergence, and susceptibility to climate change and marine pollution
- âŠ