50 research outputs found

    Iron and ruthenium catalysts for hydrogen transfer reactions

    Get PDF
    The ruthenium catalysed oxidation of 1-phenylethanol derivatives with the release of hydrogen gas has been studied. A hydrogen acceptor was introduced in an effort to elucidate the rate-determining step of the reaction. The transfer of hydrogen from complex alcohols to simple aldehydes and ketones was pursued as a process for obtaining simple alcohols for fuel cell applications. The Shvo catalyst was identified as being the most efficient catalyst for the oxidation of difficult substrates. A family of iron analogues of the Shvo catalyst were synthesised and studied as precatalysts for the oxidation of alcohols. Catalyst activation was achieved by the removal of a CO ligand using trimethylamine-N-oxide and the oxidation of 1-phenylethanol derivatives with acetone was studied. Simple aldehydes were evaluated as hydrogen acceptors and a novel formylation reaction was discovered. Asymmetric iron analogues of the Shvo catalyst were synthesised and applied to the asymmetric transfer hydrogenation of acetophenone using 5:2 formic acid/triethylamine. The synthesis of further analogues with a tethering group was investigated to improve catalyst stability and enantioselectivity. Novel chiral diamine and amino-alcohol ligands containing 1,2,3-triazole functionalities were developed as ligands for the asymmetric transfer hydrogenation of ketones. Tridentate diaminotriazoles provided the best activity and selectivity in the reduction reactions with Ru3(CO)12

    Application of ruthenium complexes of triazole-containing tridentate ligands to asymmetric transfer hydrogenation of ketones

    Get PDF
    The synthesis of a series of tridentate ligands based on a homochiral 1,2-diamine structure attached to a triazole group and their subsequent applications to the asymmetric transfer hydrogenation of ketones are described. In the best cases, alcohols of up to 93% ee were obtained. Although base is not required, the use of Ru3(CO)12 as metal source is essential, indicating a unique mechanism for the formation of the active catalyst

    Iron and ruthenium catalysts for hydrogen transfer reactions

    Get PDF
    The ruthenium catalysed oxidation of 1-phenylethanol derivatives with the release of hydrogen gas has been studied. A hydrogen acceptor was introduced in an effort to elucidate the rate-determining step of the reaction. The transfer of hydrogen from complex alcohols to simple aldehydes and ketones was pursued as a process for obtaining simple alcohols for fuel cell applications. The Shvo catalyst was identified as being the most efficient catalyst for the oxidation of difficult substrates. A family of iron analogues of the Shvo catalyst were synthesised and studied as precatalysts for the oxidation of alcohols. Catalyst activation was achieved by the removal of a CO ligand using trimethylamine-N-oxide and the oxidation of 1-phenylethanol derivatives with acetone was studied. Simple aldehydes were evaluated as hydrogen acceptors and a novel formylation reaction was discovered. Asymmetric iron analogues of the Shvo catalyst were synthesised and applied to the asymmetric transfer hydrogenation of acetophenone using 5:2 formic acid/triethylamine. The synthesis of further analogues with a tethering group was investigated to improve catalyst stability and enantioselectivity. Novel chiral diamine and amino-alcohol ligands containing 1,2,3-triazole functionalities were developed as ligands for the asymmetric transfer hydrogenation of ketones. Tridentate diaminotriazoles provided the best activity and selectivity in the reduction reactions with Ru3(CO)12.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC)GBUnited Kingdo

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Reducing Adverse Self-Medication Behaviors in Older Adults with Hypertension: Results of an e-health Clinical Efficacy Trial

    Get PDF
    A randomized controlled efficacy trial targeting older adults with hypertension (age 60 and over) provided an e-health, tailored intervention with the “next generation” of the Personal Education Program (PEP-NG). Eleven primary care practices with advanced practice registered nurse (APRN) providers participated. Participants (N = 160) were randomly assigned by the PEP-NG (accessed via a wireless touchscreen tablet computer) to either control (entailing data collection and four routine APRN visits) or tailored intervention (involving PEP-NG intervention and four focused APRN visits) group. Compared to patients in the control group, patients receiving the PEP-NG e-health intervention achieved significant increases in both self-medication knowledge and self-efficacy measures, with large effect sizes. Among patients not at BP targets upon entry to the study, therapy intensification in controls (increased antihypertensive dose and/or an additional antihypertensive) was significant (p = .001) with an odds ratio of 21.27 in the control compared to the intervention group. Among patients not at BP targets on visit 1, there was a significant declining linear trend in proportion of the intervention group taking NSAIDs 21–31 days/month (p = 0.008). Satisfaction with the PEP-NG and the APRN provider relationship was high in both groups. These results suggest that the PEP-NG e-health intervention in primary care practices is effective in increasing knowledge and self-efficacy, as well as improving behavior regarding adverse self-medication practices among older adults with hypertension

    Hydrogen generation from formic acid and alcohols using homogeneous catalysts

    No full text
    This tutorial review describes recent progress in the development of homogeneous catalytic methodology for the direct generation of hydrogen gas from formic acid and alcohols

    Application of Ruthenium Complexes of Triazole-Containing Tridentate Ligands to Asymmetric Transfer Hydrogenation of Ketones

    No full text
    The synthesis of a series of tridentate ligands based on a homochiral 1,2-diamine structure attached to a triazole group and their subsequent applications to the asymmetric transfer hydrogenation of ketones are described. In the best cases, alcohols of up to 93% ee were obtained. Although base is not required, the use of Ru<sub>3</sub>(CO)<sub>12</sub> as metal source is essential, indicating a unique mechanism for the formation of the active catalyst

    Developing asymmetric iron and ruthenium-based cyclone complexes : complex factors influence the asymmetric induction in the transfer hydrogenation of ketones

    Get PDF
    The preparation of a range of asymmetric iron and ruthenium-cyclone complexes, and their application to the asymmetric reduction of a ketone, are described. The enantioselectivity of ketone reduction is influenced by a single chiral centre in the catalyst, as well as by the planar chirality in the catalyst. This represents the first example of asymmetric ketone reduction using an iron cyclone catalyst

    (Cyclopentadienone)iron shvo complexes : synthesis and applications to hydrogen transfer reactions

    Get PDF
    A series of (cyclopendienone)iron tricarbonyl complexes were prepared using an intramolecular cyclization strategy. These were applied to the catalysis of the oxidation of alcohols to aldehydes and ketones. When paraformaldehyde was used as the hydrogen acceptor, formate esters were obtained as coproducts and, in several cases, the major products
    corecore