## THE UNIVERSITY OF

## WARWICK

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information.

To see the final version of this paper please visit the publisher's website. Access to the published version may require a subscription.

Author(s): Jonathan P. Hopewell , José E. D. Martins, Tarn C. Johnson, Jamie Godfrey and Martin Wills

Article Title: Developing asymmetric iron and ruthenium-based cyclone complexes; complex factors influence the asymmetric induction in the transfer hydrogenation of ketones

Year of publication: 2012
Link to published article: http://dx.doi.org/10.1039/C1OB06010D
Publisher statement: Hopewell, J. P., et al. (2012). Developing asymmetric iron and ruthenium-based cyclone complexes; complex factors influence the asymmetric induction in the transfer hydrogenation of ketones. Organic \& Biomolecular Chemistry, 10(1), pp. 134-145.

# Developing asymmetric iron and ruthenium-based cyclone complexes; complex factors influence the asymmetric induction in the transfer hydrogenation of ketones. 

Jonathan P. Hopewell, ${ }^{\text {a }}$ José E. D. Martins, ${ }^{\text {a }}$ Tarn C. Johnson, ${ }^{\text {a }}$ Jamie Godfrey ${ }^{\text {a }}$ and Martin Wills* ${ }^{a}$

Received (in XXX, XXX) 1st January 2007, Accepted 1st January 2007
First published on the web 1st January 2007
DOI: 10.1039/b000000x


#### Abstract

The preparation of a range of asymmetric iron and ruthenium-cyclone complexes, and their application to the asymmetric reduction of a ketone, are described. The enantioselectivity of of ketones reduction is influenced by a single chiral centre in the catalyst, as well as by the planar chirality in the catalyst. This represents the first example of asymmetric ketone reduction using an iron cyclone catalyst.


## Introduction

The ruthenium complex 1 (the Shvo catalyst) ${ }^{1-4}$ reversibly splits to give hydride 2 and the unsaturated species 3 .




By 'shuttling' between 2 and 3, the Shvo catalyst transfers pairs of hydrogen atoms between secondary alcohols and ketones and has been used to good effect in dynamic kinetic resolution (DKR) reactions of alcohols and amines. ${ }^{2,3}$ There is ${ }_{20}$ evidence, ${ }^{4}$ largely based on kinetic isotope effects, that the hydrogen transfer to ketones and aldehydes, by the Shvo catlyst, takes place via a concerted 'outer sphere' mechanism (Figure 1a). This is analogous to that of of ketone reduction by the Noyori catalyst 4 (Figure 1b). ${ }^{5}$

25


Figure 1; Comparison of mechanisms of hydrogen transfer by a) ruthenium hydride 2, b) Noyori catalyst 4 and c) iron hydride 5 . In c , the potential for substituents $\mathrm{R}^{\mathrm{L}}$ (large) and $\mathrm{R}^{\mathrm{S}}$ (small) to influence the

The Shvo catalyst is also an efficient ketone reducing agent when using an excess of an alcohol (usually iPrOH) or formic acid as hydrogen source, ${ }^{\text {1d }}$ and can also catalyse hydrogenation reactions. ${ }^{1 \mathrm{~b}, \mathrm{c}, 4 \mathrm{~d}, 6}$ The closely related iron ${ }_{35}$ complex 5 has recently been prepared from the tricarbonyl precursor $6^{7}$ and employed in catalytic reduction reactions of ketones by Casey and Guan. ${ }^{8}$ The mechanism appears to be analogous to that of the Shvo catalyst 2 (Figure 1c). In recent studies, complex 5 has been applied to the oxidation of 40 alcohols using acetone as an acceptor, and a number of its derivatives have been reported and evaluated in this role. ${ }^{9}$ In our own studies, ${ }^{10}$ we reported the synthesis and applications
of racemic complexes $\mathbf{7 a - 7} \mathbf{g}$ in alcohol oxidations. The complexes were formed by an intramolecular cyclisation from ${ }_{45}$ a linear dialkyne precursor 8, followed by diastereoisomer separation. ${ }^{7,11}$


11a $R^{1}=M e, R^{2}=P h$
11b $R^{1}=M e, R^{2}=$ TBDMS
11c $R^{1}=P h, R^{2}=$ TMS
11d $R^{1}=P h, R^{2}=$ TBDMS
11e $R^{1}=P h, R^{2}=$ TIPS


50

Scheme 1; Synthesis of iron catalysts 7b-7g.
55 However, given their proposed mechanism for reduction of ketones, we reasoned that asymmetric derivatives of $\mathbf{7 b} \mathbf{- 7} \mathbf{g}$ complexes should be capable of enantioselective ketone reduction reactions. Asymmetric induction would be predicted
to be achieved by the steric and/or electronic effects of the groups flanking the central ' $\mathrm{C}-\mathrm{O}$ ' bond of the cyclone ligand (Figure 1c).

${ }_{5}$ Since the start of our studies in this area, Yamamoto has reported the synthesis of the asymmetric Shvo-type catalyst precursors 9a/9b, which are capable of asymmetric hydrogenation ( $35 \mathrm{~atm} \mathrm{H}_{2}$ ) of acetophenone in $14-21 \%$ ee and up to $100 \%$ conversion. ${ }^{12 \mathrm{a}}$ As far as we are aware this is the ${ }_{10}$ first example of an asymmetric Shvo-type catalyst, although Berkessel has very recently published a closedly related system based on chiral-at-Fe complexes which catalysed pressure hydrogenation (i.e. with $\mathrm{H}_{2}$ gas) of acetophenone in up to $31 \%$ ee. ${ }^{12 \mathrm{~b}}$ Despite the difference in planar chirality, it 15 was found that the same enantiomer of alcohol product ( $R$ ) was formed by both 9a and 9b. Herein we disclose our own results in the area of asymmetric Shvo-type reduction catalysts using both iron- and ruthenium-based cyclone catalysts in asymmetric transfer hydrogenation (ATH) 20 reactions (Table 1).

Racemic complex $7 \mathbf{a}^{10}$ was first tested and was found to work efficiently in a formic acid/triethylamine (FA/TEA) system, as commonly used in ATH reactions (Table 1). ${ }^{5}$ At low temperature only a trace of formate byproduct was ${ }_{25}$ observed. Raising the temperature to $60{ }^{\circ} \mathrm{C}$ resulted in essentially complete reduction although some formate coproduct was formed. The use of $10 \mathrm{~mol} \%$ catalyst was required, along with $10 \mathrm{~mol} \%$ of trimethylamine N -oxide to initiate hydride formation. ${ }^{9 b, 10,13}$ An inferior result was ${ }_{30}$ observed in iPrOH. ${ }^{5}$ Enantiopure complexes 7b-7g were prepared (Scheme 1) from alcohol ( $R$ )-11a (made in $96 \%$ ee by reduction of the precursor ketone 10a by ATH using an established catalyst ${ }^{14}$ ). Elaboration of $(R)$-11a following the reported route ${ }^{10}$ gave in each case (i.e. from $\mathbf{8 b}$-d where $\mathrm{R}^{1}=$ ${ }_{35}$ TBDMS, TMS and Ph respectively) two enantiomericallyenriched complexes which were separated by chromatography on silica gel. In our previous studies on the racemic series, we had established the relative configuration of the chiral centres via an X-ray crystallographic solution of $\mathbf{7 c}$; the other iron 40 complexes are assigned by analogy with $\mathbf{7 b} / \mathbf{c} .{ }^{10}$ The enantiomeric purity of catalyst $7 \mathbf{d}$ was established using a shift reagent and was established to be ca. $92 \%$ ee, indicating a small loss of ee relative to the alcohol but a high enough level to be meaningful in these investigations (see supporting 45 information). Conversions were in all cases measured by integrating the product peaks in the GC against the starting material peaks.

The new catalysts were tested in the ATH of acetophenone (Table 1). In the case of $\mathbf{7 b} / \mathbf{c}$, the catalyst proved to be of low ${ }_{50}$ activity and a reduction product of low ee was formed in the same major enantiomeric form. Each purified, enantiomerically-pure diastereoisomer of $\mathbf{7 d} / \mathbf{e}$ was found to be a more effective catalyst for ketone reduction in 5:2 FA/TEA, giving almost complete transformation within 48-96
55 hours at $40^{\circ} \mathrm{C}$. Again, both gave reduction products of the same absolute configuration, mirroring the activity of the
ruthenium complexes reported by Yamamoto. ${ }^{12}$ More interestingly, catalysts $7 \mathbf{f} / \mathbf{g}$, which bear identical (phenyl) groups flanking the central $\mathrm{C}=\mathrm{O}$ function in the cyclone, also ${ }_{60}$ gave the same alcohol enantiomers. The chiral centre on the backbone of the cyclone clearly has a significant effect on the catalyst enantioselectivity, possibly due to an influence on the conformation of the phenyl rings.. Although the ees are low, the isomer with the methyl group positioned proximal to the ${ }_{65} \mathrm{Fe}(\mathrm{CO})_{3}$ group gave a higher ee in each case ( $\mathbf{7 b}, \mathrm{d}, \mathrm{f}$ vs $\mathbf{7 c}, \mathbf{e}, \mathbf{g}$ respectively). The effect may arise via an influence on the positions of the CO ligands which subsequently communicates to the reduction transition state.

Monitoring the reductions over time indicated that the ees 70 did not change significantly over time, even after several days (e.g. 7d after 48 and 96h), indicating that product racemisation is not taking place. Although the conversions appear to level out over time, it is at present unclear as to whether this may be due to catalyst deactivation or a solvent 75 effect. Formic acid/triethylamine was used in the traditional azeotrope ratio of 5:2 throughout. A ratio of 1:1 FA:TEA gave a conversion of $25 \%$ in 96 h and $21 \%$ ee when 7 d was used as catalyst. A 1:2 FA:TEA mixture was not homogeneous, whilst a 5:1 FA:TEA mixture gave only $11 \%$ conversion after 96 h , in ${ }_{80} 26 \%$ ee. These results indicate that the FA:TEA ratio effects the rate but not the ee of the reaction, with 5:2 being the best ratio of those tested.

As far as we are aware, this represents the first application of any iron cyclone complex to the asymmetric reduction of 85 ketones by transfer hydrogenation, ${ }^{12}$ and also reveals an unusual effect of a backbone chiral centre on the observed enantiocontrol.

We also wished to establish whether the analogous ruthenium-based catalysts would exhibit a similar pattern of ${ }_{90}$ enantioselectivity. To this end, complexes 12a-12f were prepared and evaluated, using the corresponding diyne precursors. ${ }^{15}$


95
Alcohol ( $R$ )-11a ( $96 \%$ ee) was converted to the three derivatives 12a-12f following the precendent for the iron complexes ${ }^{10}$ but with the use of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ in the complexation step. ${ }^{15}$ Complexes $\mathbf{1 2 a} / \mathbf{b}$, were formed as a 100 mixture of two separable diastereoisomers of product in 27 and $12 \%$ isolated yields respectivity. Although the relative position of the Me group has not been established, we have assumed that, in analogy with the iron series, that the major enantiomer is that in which the Me on the backbone is ${ }_{105}$ proximal to the $\mathrm{Ru}(\mathrm{CO})_{3}$ group. Both 12a and 12b were effective in catalysing the reduction of acetophenone, again in the same absolute sense (Table 1). Unlike the Fe series, there was evidence of racemisation during extended reaction times; for example in the case of 12a, the ee was $20 \%$ after 10 h . For 110 the Ru complexes, in situ formation of the hydride using

NaOH in THF followed by phosphoric acid was completed prior to the reduction, ${ }^{7 \mathrm{a}}$ and $\mathrm{Me}_{3} \mathrm{NO}$ was not required. The ruthenium catalysts were also used at lower loadings (1 $\mathrm{mol} \%$ ) than the iron complexes ( $10 \mathrm{~mol} \%$ ). In the case of $\mathbf{1 2} \mathbf{c} / \mathbf{d}$, only one isomer was isolated, and in low yield, from the cyclisation, and was assumed to be of the configuration shown in 12c. This complex promoted reduction but in poor enantioselectivity.

Table 1; Asymmetric reduction of acetophenone using iron and ${ }^{10}$ ruthenium cyclone complexes ${ }^{a}$


| $\begin{gathered} \text { Com- } \\ \text { plex } \end{gathered}$ | Conditions | $\begin{gathered} \text { Time } \\ / \mathrm{h} \end{gathered}$ | $\begin{aligned} & \text { Conv/\%b } \\ & \text { (alcohol) } \end{aligned}$ | $\begin{gathered} \mathrm{Ee} \\ (R / S) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 7a | FA/TEA $28^{\circ} \mathrm{C} 1 \mathrm{M}$ | 18 | 60 (<1 form) | n/a |
| 7a | FA/TEA $40^{\circ} \mathrm{C} 1 \mathrm{M}$ | 18 | 90 (+2 form) | n/a |
| 7 a | FA/TEA $60^{\circ} \mathrm{C} 1 \mathrm{M}$ | 18 | 89 (+10 form.) | n/a |
| 7a | ${ }^{\text {iPrOH }} 28^{\circ} \mathrm{C} 0.2 \mathrm{M}$ | 18 | 6.8 | n/a |
| 7 a | iPrOH $60^{\circ} \mathrm{C} 0.2 \mathrm{M}$ | 18 | 52 | n/a |
| 7b | FA/TEA $28^{\circ} \mathrm{C} 1 \mathrm{M}$ | 48 | 25 | 15 (R) |
| 7b | FA/TEA $40^{\circ} \mathrm{C} 1 \mathrm{M}$ | 48 | 36 | $10(R)$ |
| 7c | FA/TEA $40^{\circ} \mathrm{C} 1 \mathrm{M}$ | 96 | 10 | $10(R)$ |
| 7d | FA/TEA $28^{\circ} \mathrm{C} 1 \mathrm{M}$ | 48 | 40 | $25(R)$ |
| 7d | FA/TEA $28^{\circ} \mathrm{C} 1 \mathrm{M}$ | 96 | 69 | $23(R)$ |
| 7e | FA/TEA $28^{\circ} \mathrm{C} 1 \mathrm{M}$ | 48 | 46 | $11(R)$ |
| 7d | FA/TEA $40^{\circ} \mathrm{C} 1 \mathrm{M}$ | 96 | 80 (+5 form) | $23(R)$ |
| 7e | FA/TEA $40^{\circ} \mathrm{C} 1 \mathrm{M}$ | 48 | 91 (+5 form.) | $11(R)$ |
| 7 f | FA/TEA $40^{\circ} \mathrm{C} 1 \mathrm{M}^{\text {d }}$ | 96 | 66 (+10 form.) | $25(R)$ |
| 7 g | FA/TEA $40^{\circ} \mathrm{C} 1 \mathrm{M}^{\text {d }}$ | 96 | 17 | $5(R)$ |
| 12a | FA/TEA $60^{\circ} \mathrm{C} 1.6 \mathrm{M}$ | 160 | 50 | $12(R)^{\text {c }}$ |
| 12a | iPrOH $60^{\circ} \mathrm{C} 0.18 \mathrm{M}$ | 160 | 28 | $11(R)$ |
| 12b | FA/TEA $60^{\circ} \mathrm{C} 1.6 \mathrm{M}$ | 160 | 61 | $3(R)$ |
| 12b | iPrOH $60^{\circ} \mathrm{C} 0.18 \mathrm{M}$ | 160 | 35 | $4(R)$ |
| 12c | FA/TEA $60^{\circ} \mathrm{C} 1.6 \mathrm{M}$ | 150 | 48 | $5(R)$ |
| 12c | iPrOH $60^{\circ} \mathrm{C} 0.18 \mathrm{M}$ | 150 | 58 | 3 (R) |
| 12e | FA/TEA $60^{\circ} \mathrm{C} 1.6 \mathrm{M}$ | 18 | 31 | $17(R)$ |
| 12e | iPrOH $60^{\circ} \mathrm{C} 0.18 \mathrm{M}$ | 18 | 13 | $11(R)$ |
| 13a/b | FA/TEA $60^{\circ} \mathrm{C} 1.6 \mathrm{M}$ | 150 | 19 | $15(S)$ |
| 13a/b | iPrOH $60^{\circ} \mathrm{C} 0.18 \mathrm{M}$ | 150 | 20 | 5 (S) |
| 16 | FA/TEA $60^{\circ} \mathrm{C}$ 1.6M | 168 | 35 (+5 form.) | n/a |
| 16 | iPrOH $60^{\circ} \mathrm{C} 0.18 \mathrm{M}$ | 184 | 17 | n/a |
| 17 | FA/TEA $60^{\circ} \mathrm{C} 1.6 \mathrm{M}$ | 168 | 80 (+7 form.) | n/a |
| 17 | iPrOH $60^{\circ} \mathrm{C} 0.18 \mathrm{M}$ | 168 | 90 | n/a |
| 18 | FA/TEA $60^{\circ} \mathrm{C} 1.6 \mathrm{M}$ | 168 | 12.5 | n/a |
| 18 | iPrOH $60^{\circ} \mathrm{C} 0.18 \mathrm{M}$ | 168 | 21 | n/a |

a. $10 \mathrm{~mol} \%$ iron catalyst was used, with $10 \mathrm{~mol} \% \mathrm{Me}_{3} \mathrm{NO} . \mathrm{b}$. form. $=$ formate byproduct. c. ee was $20 \%(R)$ at 10 h and decreased with time. d. 15 Reactions at $28^{\circ} \mathrm{C}, 1 \mathrm{M}$ with $\mathbf{7 c} ; 48 \mathrm{~h}, 5 \%$ conv, $10 \%$ ee $(R), 7 \mathbf{f} ; 96 \mathrm{~h}, 2 \%$ conv, $29 \%$ ee, $7 \mathbf{g}$; 96h, trace conversion

Complexes 12e/f have two identical groups flanking the central $\mathrm{C}=\mathrm{O}$ group, analogous to $7 \mathbf{c} / \mathbf{d}$. The cyclisation to form 12e/f was achieved in low yield, however only one 20 diastereoisomer, assumed to be 12e, could be isolated. This was capable of reduction of acetophenone in up to $17 \%$ ee $(R)$, which, although low, confirms that for the Ru catalysts as well as the iron ones, planar asymmetry is not required for the asymmetric reduction. In order to eliminate the effect of one ${ }_{25}$ backbone chiral centre, complexes 13a/b were selected for study - in this case containing two methyl groups in a cis arrangement. This was prepared by reacting alcohol ( $R$ )-11b
(see below) with mesylated $(R)$-11a, resulting in inversion of configuration. Cyclisation of the resulting diyne with ${ }_{30} \mathrm{Ru}_{3}(\mathrm{CO})_{12}$ gave a mixture from which one isomer of $\mathbf{1 3}$ was isolated in pure form. Although the relative positions of the methyl groups to the $\mathrm{Ru}(\mathrm{CO})_{3}$ centre are not known, this catalyst will rely on planar chirality alone in the reduction reaction. The result was that acetophenone was reduced in up
${ }_{35}$ to $15 \%$ ee, and in this case unexpected ( $S$ ) configuration (Table 1). Taken together, these results indicate that asymmetric induction by cyclone catalysts arises from a combination of control by backbone chiral centres and planar chirality.
40


The synthesis of catalysts 14a-c was investigated. The TBS-substituted alcohol $(R) \mathbf{- 1 1 b}$ was prepared from 10b in ${ }_{45}$ quantitative conversion, $88 \%$ isolated yield and over $99 \%$ ee using the same ATH catalyst as was used for 11a. ${ }^{14}$ Unfortunately, separation of the diastereomers of these complexes could not be achieved and these were not evaluated in reductions.
${ }_{50}$ In studies directed at improving the d.e.s of the cyclisation through the use of a larger group on the chiral centre, we examined derivatives of $\mathbf{8}$ where $\mathrm{R}^{3}=\mathrm{Ph} . \mathrm{Ru} / \mathrm{TsDPEN}$ catalysts are less effective at reduction of aryl/propargylic ketones 10c10e, ${ }^{16}$ therefore these were reduced using $(R)$-Alpine borane. ${ }^{17}$ ${ }_{55}$ For variation of group $\mathrm{R}^{1}$, we prepared alcohols $(R)-11 \mathrm{c}-11 \mathrm{e}$ however the TMS derivative $(R)$-11c was prone to loss of the silyl group in the subsequent alcohol alkylation step. Reaction of the dialkyne derivatives of $(R)$ - $\mathbf{1 1 d}(96 \%$ ee) and $(R)-\mathbf{1 1 e}$ ( $97 \%$ ee) with $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ led to the formation of Ru cyclone ${ }_{60}$ complexes 15a-f, all of which were formed as inseparable mixtures of diastereoisomers and proved to be poor catalysts (see SI). For comparison of relative reactivity, symmetrical complexes 16-18 were also prepared and tested in ATH reactions; the TBDMS-substituted catalyst $\mathbf{1 7}$ proved to be the ${ }_{65}$ most active (Table 1).

In conclusion, a series of enantiomerically enriched iron and ruthenium cyclone complexes have been prepared and applied to the ATH of ketones to alcohols. The iron complexes, in their first reported role as ATH catalysts, are as 70 effective in terms of asymmetric induction as the ruthenium complexes, although higher loadings are required. Other ironbased catalysts have recently been reported to give higher activities and enantioselectivities. ${ }^{18}$ The results also indicate that the control of enantioselectivity in the reductions, whilst 75 modest, appears to rely on a novel means of asymmetric induction by a remote chiral centre in addition to the planar symmetry of the catalysts.

## Experimental section.

Procedures for starting material ketones, racemic reductions, synthesis of 16-18, Tables for reductions using 15a-f and NMR spectra may be found in the Electronic Supporting Information.

## 5 (R)-4-Phenyl-3-butyne-2-ol 11a. ${ }^{14}$

$(R, R)$-Tethered $\mathrm{Ru}(\mathrm{II})$ catalyst $(43 \mathrm{mg}, 0.07 \mathrm{mmol})^{14 \mathrm{~b}}$ was dissolved in $\mathrm{PrOH}\left(135 \mathrm{~cm}^{3}\right)$ at $28{ }^{\circ} \mathrm{C}$. $\mathrm{KOH}(0.1 \mathrm{M}$ in iPrOH , $3.46 \mathrm{~cm}^{3}, 0.0346 \mathrm{mmol}$ ) was added and the solution was observed to initially turn dark purple and the gradually become ${ }_{10}$ lighter in colour. After stirring for 30 min at $28{ }^{\circ} \mathrm{C}, 4$-phenyl-3-butyne-2-one 10a ( $2.00 \mathrm{~g}, 13.88 \mathrm{mmol}$ ) was added and again the mixture turned dark purple. After 15 h the solvent was removed in vacuo to afford a dark oil which was purified by short path distillation ( $125{ }^{\circ} \mathrm{C}, 5.8 \mathrm{mbar}$ ) to afford the alcohol as a 15 colourless oil ( $1.80 \mathrm{~g}, 12.32 \mathrm{mmol}, 89 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}+32.4$ (c 0.966 in $\mathrm{CHCl}_{3}$ ) (lit. ${ }^{14 \mathrm{a}}[\alpha]_{\mathrm{D}}{ }^{23}-35.0$ (c 1.0 in $\mathrm{CHCl}_{3}$ ) $97 \%$ ee ( S ); $\mathrm{m} / \mathrm{z}$ (ESI) $169[\mathrm{M}+23]^{+}$; (Found (ESI): $\mathrm{M}+\mathrm{Na} 169.0630, \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NaO}$ requires 169.0624); $v_{\text {max }} 3298,2978,2927,2870,2225,1595$ and $1490 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46-7.41(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.34-$ ${ }_{20} 7.28(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 2.00(1 \mathrm{H}, \mathrm{d}, J 5.13$, $\mathrm{OH}), 1.57\left(3 \mathrm{H}, \mathrm{d}, J 7.03, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 131.68$ (CH, Ar), 128.42 (CH, Ar), 128.42 (CH, Ar), 122.61 (ipso, Ar), $90.96 \quad(\mathrm{C} \equiv \mathrm{C}), \quad 84.05 \quad(\mathrm{C} \equiv \mathrm{C}), \quad 58.91 \quad\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), \quad 24.42$ $\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right)$; The ee was determined using chiral GC of the 25 acetyl derivative of the alcohol synthesised from reacting a sample of the alcohol ( $<10 \mathrm{mg}$ ) with acetic anhydride ( $<50 \mu \mathrm{~L}$ ) and DMAP $(<1 \mathrm{mg})$ in DCM $\left(c a .1 \mathrm{~cm}^{3}\right)$ overnight; cyclodextrin CB column; $96 \%$ ee, $115^{\circ} \mathrm{C}, \mathrm{H}_{2}, 15 \mathrm{psi}, 62.72$ (S), 64.18 min (R). ${ }^{14 \mathrm{~b}}$

30
(R)-Dipropargylic ether 8a (8; $\left.\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right) .{ }^{19}$

Sodium hydride $(0.190 \mathrm{~g}, 60 \%$ on mineral oil, $4.746 \mathrm{mmol}, 1.1$ eq) was added to ( $R$ )-4-phenyl-3-butyne-2-ol $(0.630 \mathrm{~g}, 4.315$ mmol, 1 eq.) in THF $\left(8 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. After 30 min , propargylic ${ }_{35}$ bromide $\left(0.55 \mathrm{~cm}^{3}, 0.7695 \mathrm{~g}, 80 \%\right.$ in toluene, $5.178 \mathrm{mmol}, 1.2$ eq.) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction was left to warm to room temperature over 2.5 h . The mixture was quenched using saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}\left(30 \mathrm{~cm}^{3}\right.$ ) and extracted with ether ( $3 \times 30$ $\mathrm{cm}^{3}$ ). The combined organic fractions were dried over $\mathrm{MgSO}_{4}$ 40 and the solvent removed in vacuo to afford a yellow oil. Purification by column chromatography ( $\mathrm{EtOAc} / \mathrm{pet}$. Ether (4060) 1:20) afforded propagylic ether $\mathbf{8 a}\left(\mathbf{8} ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right)$ as a yellow oil $(0.70 \mathrm{~g}, 3.804 \mathrm{mmol}, 88 \%) ;[\alpha]_{\mathrm{D}}{ }^{28}+289.04$ (c 0.762 in $\mathrm{CHCl}_{3}$ ); $m / z$ (ESI) $207\left(\mathrm{M}^{+}+23\right.$ ); (Found (ESI): $\mathrm{M}+\mathrm{Na}$ ${ }_{45} 207.0788, \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NaO}$ requires 207.0780); $v_{\text {max }} 3289,2985$, 2932, 2853, 2361, 2223, 2198, 2115, 1958, 1888, 1724, 1671, 1596, $1489,1439,1368$ and $1325 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.51-7.45$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.38-7.32(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.68\left(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{OCHCH}_{3}\right)$, $4.44(1 \mathrm{H}, \mathrm{dd}, J 15.6,2.0, \mathrm{OCHH}), 4.36(1 \mathrm{H}, \mathrm{dd}, J 15.6,2.0$
$\left.{ }_{50} \mathrm{OCH} H\right), 2.49(1 \mathrm{H}, \mathrm{t}, J 2.0, \mathrm{C} \equiv \mathrm{CH}), 1.59\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $131.73(\mathrm{CH}, \mathrm{Ar}), 128.43(\mathrm{CH}, \mathrm{Ar}), 128.25$ ( $\mathrm{CH}, \mathrm{Ar}$ ), 122.45 (ipso, Ar ), $87.88(\mathrm{C} \equiv \mathrm{C}), 85.62(\mathrm{C} \equiv \mathrm{C}), 79.56$ $\left((\mathrm{C} \equiv \mathrm{CH}), 74.42(\mathrm{C} \equiv \mathrm{C}), 64.62(\mathrm{OCH}), 55.74\left(\mathrm{OCH}_{2}\right), 22.00\right.$ $\left(\mathrm{CH}_{3}\right)$.

55
( $\boldsymbol{R}$ )-Dipropargylic ether $\mathbf{8 c}\left(\mathbf{8} ; \mathrm{R}^{1}=\mathrm{Me}_{3} \mathrm{Si}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right){ }^{10}$ To $\mathbf{8 a}\left(\mathbf{8} ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right)(0.350 \mathrm{~g}, 1.9022 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF ( $12.5 \mathrm{~cm}^{3}$ ) was added $\mathrm{nBuLi}\left(1.6 \mathrm{M}\right.$ in hexanes, $1.3 \mathrm{~cm}^{3}$,
$2.092 \mathrm{mmol}, 1.1$ eq.) at $-78{ }^{\circ} \mathrm{C}$. After 1 h at $-78{ }^{\circ} \mathrm{C}$, 60 trimethylsilylchloride $\left(0.29 \mathrm{~cm}^{3}, 0.248 \mathrm{~g}, 2.283 \mathrm{mmol}, 1.2\right.$ eq.) was added and the mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h before being allowed to warm to room temperature overnight. The reaction was quenched using saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(aq) }}\left(15 \mathrm{~cm}^{3}\right)$ and extracted using $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 15 \mathrm{~cm}^{3}\right)$. The combine organics were dried over ${ }_{65} \mathrm{MgSO}_{4}$ and the solvent removed in vacuo to afford the product as a dark yellow oil ( $0.4800 \mathrm{~g}, 1.86 \mathrm{mmol}, 98 \%)$ and used without further purification; $[\alpha]_{\mathrm{D}}{ }^{28}+160.04$ (c 0.57 in $\mathrm{CHCl}_{3}$ ); $m / z$ (ESI) $279[\mathrm{M}+23]^{+}$; (Found (ESI): M+Na $279.1176 \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NaOSi}$ requires 279.1176); $v_{\max }$ 2985, 2954, 2927, 2890, 2843, 2168, ${ }_{70} 1763,1595$ and $1487 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48-7.45(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.34-7.30(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.62\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.5, \mathrm{OCHCH}_{3}\right), 4.42$ $(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{OCHH}), 4.32(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{OCH} H), 1.57(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.5, \mathrm{CH}_{3}\right), 0.20\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 131.73$ (CH, Ar), 128.39 (CH, Ar), 128.24 (CH, Ar), 122.55 (ipso, Ar), ${ }_{75} 101.29(\mathrm{C} \equiv \mathrm{C}), 91.35(\mathrm{C} \equiv \mathrm{C}), 88.12(\mathrm{C} \equiv \mathrm{C}), 85.53(\mathrm{C} \equiv \mathrm{C}), 64.66$ $(\mathrm{OCH}), 55.61\left(\mathrm{OCH}_{2}\right), 22.02\left(\mathrm{CHCH}_{3}\right),-0.10\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
(R)-Dipropargylic ether $8\left(\mathrm{R}^{1}=(\mathrm{iPr})_{3} \mathrm{Si}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right)$.

To 8a (8: $\left.\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right)(0.350 \mathrm{~g}, 1.9022 \mathrm{mmol}, 1$ eq.) in ${ }_{80}$ THF ( $12.5 \mathrm{~cm}^{3}$ ) was added $\mathrm{nBuLi}\left(1.6 \mathrm{M}\right.$ in hexanes, $1.3 \mathrm{~cm}^{3}$, $2.092 \mathrm{mmol}, 1.1 \mathrm{eq}$. .) at $-78{ }^{\circ} \mathrm{C}$. After 1 h at $-78{ }^{\circ} \mathrm{C}$ triisopropylsilylchloride $\left(0.49 \mathrm{~cm}^{3}, 0.440 \mathrm{~g}, 2.283 \mathrm{mmol}, 1.2\right.$ eq.) was added and the mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h before being allowed to warm to room temperature overnight. The reaction ${ }_{85}$ was quenched using saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}\left(15 \mathrm{~cm}^{3}\right)$ and extracted using $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 15 \mathrm{~cm}^{3}\right)$. The combined organics were dried over $\mathrm{MgSO}_{4}$ and the solvent removed in vacuo to afford the product as a dark orange oil in quantative yield and used without further purification; $[\alpha]_{\mathrm{D}}{ }^{28}+150.35$ (c 0.20 in $\mathrm{CHCl}_{3}$ ); m/z (ESI) $363[\mathrm{M}$ $\left.{ }_{90}+23\right]^{+}$; (Found (ESI): $\mathrm{M}+\mathrm{Na} 363.2115 \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NaOSi}$ requires $363.2115)$; $v_{\max } 2937,2890$ and $2863 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.47-7.44 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.34-7.30 (3H, m, Ar), $4.74(1 \mathrm{H}, \mathrm{q}, J 6.5$, $\left.\left(\mathrm{OCHCH}_{3}\right)\right), 4.41\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 1.57\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHCH}_{3}\right)$, 1.12-1.08 $\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ${ }_{95} 131.82(\mathrm{CH}, \mathrm{Ar}), 128.39(\mathrm{CH}, \mathrm{Ar}), 128.27(\mathrm{CH}, \mathrm{Ar}), 122.67$ (ipso, Ar), $103.14(\mathrm{C} \equiv \mathrm{C}), 88.30(\mathrm{C} \equiv \mathrm{C}), 87.73(\mathrm{C} \equiv \mathrm{C}), 85.34$ $(\mathrm{C} \equiv \mathrm{C}), 64.01(\mathrm{OCH}), 56.58\left(\mathrm{CH}_{2}\right), 22.03,18.61,17.72,12.31$, 11.19.
${ }_{100}(\boldsymbol{R})$-Dipropargylic ether 8b $\quad\left(\mathbf{8}: \quad \mathrm{R}^{1}=(\mathrm{tBu})_{3} \mathrm{SiMe}_{2}, \quad \mathrm{R}^{2}=\mathrm{Ph}\right.$, $\left.\mathrm{R}^{3}=\mathrm{Me}\right) .{ }^{10}$
Compound 8a (8: $\left.\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right)(0.195 \mathrm{~g}, 1.06 \mathrm{mmol})$ was dissolved in dry THF $\left(15 \mathrm{~cm}^{3}\right)$ and cooled to $-78{ }^{\circ} \mathrm{C}$. nButyllithium in hexanes ( $1.6 \mathrm{M}, 0.79 \mathrm{~cm}^{3}, 1.26 \mathrm{mmol}$ ) was added ${ }_{105}$ dropwise and the mixture was allowed to stir for 1 h after which time tert-butyldimethylsilylchloride ( $0.207 \mathrm{~g}, 1.37 \mathrm{mmol}$ ) in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ was added. After 17 h the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$, the THF was removed under reduced pressure and the product was extracted into $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. ${ }_{110}$ The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure to give the product as a brown oil which was purified by column chromatography on silica with a gradient elution from $100 \%$ petroleum ether to 80:20 petroleum ether:ethyl acetate to give the 115 product 8 as a yellow oil ( $0.206 \mathrm{~g}, 0.69 \mathrm{mmol}, 65 \%)$. The measured data is in agreement with that previously reported for
the racemic compound. ${ }^{10}[\alpha]_{\mathrm{D}}{ }^{24}+150.7$ (c 1.0 in $\mathrm{CHCl}_{3}$ ); $\delta_{\mathrm{H}}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.42-7.46 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.28-7.34 (3H, m, Ar), 4.64 $\left(1 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right), 4.41\left(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{CCH}_{2} \mathrm{O}\right), 4.33$ $\left(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{CCH}_{2} \mathrm{O}\right), 1.55\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz},\left(\mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right)\right.$, ${ }_{5} 0.95\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) 0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$.
( $\boldsymbol{R}$ )-Dipropargylic ether 8d (8: $\left.\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right)$.
To 8a (8: $\left.\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right)(0.400 \mathrm{~g}, 2.1739 \mathrm{mmol}, 1 \mathrm{eq}$.), phenyliodide ( $0.29 \mathrm{~cm}^{3}, 0.5322 \mathrm{~g}, 2.6087 \mathrm{mmol}, 1.2$ eq.) in 10 triethylamine $\left(7 \mathrm{~cm}^{3}\right)$ at $50{ }^{\circ} \mathrm{C}$ was added $\mathrm{Pd}\left(\mathrm{Cl}_{2}\right)\left(\mathrm{PPh}_{3}\right)(0.031 \mathrm{~g}$, $0.043 \mathrm{mmol}, 0.02 \mathrm{eq}$.) After stirring for $5 \mathrm{~min}, \mathrm{CuI}(0.04 \mathrm{~g}$, $0.0217 \mathrm{mmol}, 0.01 \mathrm{eq}$.) was added and the mixture kept at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then hot filtered to remove the amide salts. Removal of the remaining amine in vacuo afforded a yellow 15 oil which was purified by column chromatography to afford the product as a light yellow oil $(0.358 \mathrm{~g}, 1.3769 \mathrm{mmol}, 63 \%) ;[\alpha]_{\mathrm{D}}{ }^{28}$ +180.00 (c 0.16 in $\mathrm{CHCl}_{3}$ ); m/z (ESI) $261\left[\mathrm{M} \mathrm{+1]}^{+}, 283\right.$ [M $+23]^{+}$; (Found (ESI): M+Na $283.1093 \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NaO}$ requires 283.1093); $v_{\text {max }} 3052,2981,2934,2843,2219$ and $1716 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ 20 ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.50-7.46 (4H, m, Ar), 7.35-7.30 ( $6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), $4.73\left(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{OCHCH}_{3}\right), 4.65(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{OC} H \mathrm{H})$, $\left.\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right) .{ }^{10,19} 4.73(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{OCHCH})_{3}\right), 4.65$ $(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{OCHH}), 4.57(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{OCH} H), 1.61(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.5, \mathrm{OCHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 131.81(\mathrm{CH}, \mathrm{Ar}), 131.76$ $25(\mathrm{CH}, \mathrm{Ar}), 128.42(\mathrm{CH}, \mathrm{Ar}), 128.40(\mathrm{CH}, \mathrm{Ar}), 128.25(\mathrm{CH}, \mathrm{Ar})$, 128.23 (CH, Ar), 122.61 (ipso, Ar), 122.54 (ipso, Ar), 88.18 $(\mathrm{C} \equiv \mathrm{C}), 86.22(\mathrm{C} \equiv \mathrm{C}), 85.61(\mathrm{C} \equiv \mathrm{C}), 84.92(\mathrm{C} \equiv \mathrm{C}), 64.66(\mathrm{OCH})$, $56.60\left(\mathrm{OCH}_{2}\right), 22.08\left(\mathrm{OCHCH}_{3}\right)$.
${ }_{30}(\boldsymbol{R})$-alcohol 11b. ${ }^{20}$
Tethered-TsDPEN $(R, R) \mathrm{Ru}(\mathrm{II})$ catalyst ${ }^{14 \mathrm{~b}}$ ( $31 \mathrm{mg}, 0.005 \mathrm{mmol}$, $0.5 \mathrm{~mol} \%$ ) was dissolved in anhydrous $\operatorname{iPrOH}\left(97 \mathrm{~cm}^{3}\right)$ and warmed to $28^{\circ} \mathrm{C}$. On addition of KOH (in iPrOH, $0.1 \mathrm{M}, 2.5 \mathrm{~cm}^{3}$, 0.25 mmol ) the colourless solution turned dark purple and was ${ }_{35}$ stirred at $28{ }^{\circ} \mathrm{C}$ for 30 min before TBDMS-3-butyn-2-one 10b $(1.840 \mathrm{~g}, 10 \mathrm{mmol})$ was added. After 18 h at $28^{\circ} \mathrm{C}$ the solvent was removed in vacuo and the resulting alcohol was purified by column chromatography ( $\mathrm{EtOAc} / \mathrm{Hexane} 5 \%$ ) to afford a yellow oil ( $1.630 \mathrm{~g}, 8.76 \mathrm{mmol}, 88 \%$ ); $m / z$ (ESI) $207[\mathrm{M}+23]^{+} ;[\alpha]_{\mathrm{D}}{ }^{28}$; ${ }_{40}+26.29$ (c 0.978 in $\mathrm{CHCl}_{3}$ ); $v_{\text {max }} 3315,2954,2924,2887,2853$, 2168, 1470 1358, 1251, 1112, 1072, 1041 and $940 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.52\left(1 \mathrm{H}, \mathrm{dq}, J 6.6,5.3, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 1.77(1 \mathrm{H}, \mathrm{d}$, J 5.3, OH), $1.45\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 0.93(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 108.35$ ${ }_{45}$ (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 86.64 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), $58.75\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 26.00$ $\left(\mathrm{CH}_{3}\right), 24.35\left(\mathrm{CH}_{3}\right), 16.42$ (quat., $\left.\mathrm{Si} C\left(\mathrm{CH}_{3}\right)_{3}\right),-4.71\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$. The ee was determined using the acetyl derivative of the alcohol synthesised from reacting a trace amount of the alcohol ( $<10 \mathrm{mg}$ ) with acetic anhydride ( $<50 \mu \mathrm{~L}$ ) and DMAP ( $<1$ ${ }_{50} \mathrm{mg}$ ) in DCM (ca. $1 \mathrm{~cm}^{3}$ ) overnight. cyclodextrin CB column; 99 $\%$ ee, $115^{\circ} \mathrm{C}, \mathrm{H}_{2}, 15 \mathrm{psi}, 14.19(S), 14.51 \mathrm{~min}(R)$.
( $\boldsymbol{R}$ )-Mesyl derivative of ( $\boldsymbol{R}$ )-4-phenyl-3-butyne-2-ol 11a. ${ }^{21}$
To ( $R$ )-4-phenyl-3-butyne-2-ol 11a $\left(1.00 \mathrm{~g}, 1.00 \mathrm{~cm}^{3}, 6.833\right.$ mmol, 1 eq.) and triethylamine ( $1.90 \mathrm{~cm}^{3}, 13.46 \mathrm{mmol}, 2$ eq.) in ${ }_{55} \mathrm{DCM}\left(10 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was slowly added methanesulfonyl chloride ( $0.80 \mathrm{~cm}^{3}, 10.13 \mathrm{mmol}, 1.5 \mathrm{eq}$.) after 1 h the mixture was allowed to warm to room temperature and quenched with
$\mathrm{NaHCO}_{3(\mathrm{aq})}\left(15 \mathrm{~cm}^{3}\right)$, extracted with DCM (3 x $\left.10 \mathrm{~cm}^{3}\right)$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent in vacuo afforded the 60 mesylate as a colourless oil in quantitative yield and was used immediately without further purification; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{d}_{6}{ }^{-}\right.$ DMSO) 7.50-7.46 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.43-7.34 (3H, m, Ar), $5.55(1 \mathrm{H}$, q, J 6.5, $\left.\mathrm{CHCH}_{3}\right), 3.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 1.77(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5$, $\mathrm{CHCH}_{3}$ ).
65

## (R,S)-Dipropargyl ether precursor of ligand 13a/b.

To (R)-4-(t-butyldimethylsilyl)-3-butyne-2-ol 11b $\quad(0.3852 \mathrm{~g}$, $2.0710 \mathrm{mmol}, 1$ eq.) in THF ( $5 \mathrm{~cm}^{3}$ ) was added sodium hydride $\left(0.083 \mathrm{~g}, 2.0710 \mathrm{mmol}, 60 \%\right.$ in mineral oil, 1 eq.) at $0{ }^{\circ} \mathrm{C}$. After 7030 min the mesyl derivative of $(R)$-4-phenyl-3-butyne-2-ol 11a $(0.46 \mathrm{~g}, 2.0710 \mathrm{mmol}, 1 \mathrm{eq}$.) was added and the reaction was allowed to warm to room temperature over 18 h . After quenching the mixture using saturated aqueous sodium bicarbonate $\left(5 \mathrm{~cm}^{3}\right)$ the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 7 \mathrm{~cm}^{3}\right)$ and dried over
${ }_{75} \mathrm{NaSO}_{4}$, removal of the solvent in vacuo afforded a yellow oil which was purified by column chromatography (EtOAc/hexane gradient $1: 100$ to $1: 10$ ) yielding the product as a colourless oil ( $0.1911 \mathrm{~g}, 0.6125 \mathrm{mmol}, 30 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}+0.19$ (c 0.78 in $\mathrm{CHCl}_{3}$ ); $\mathrm{m} / \mathrm{z}$ (ESI) $335.2[\mathrm{M}+23]^{+}$; (Found (ESI): $\mathrm{M}+\mathrm{Na} 335.1801$ ${ }_{80} \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NaOSi}$ requires 335.1802); $v_{\max }$ 2983, 2952, 2929, 2880 and $2853 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48-7.42(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $7.33-7.28(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.72(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{CH}), 4.51(1 \mathrm{H}, \mathrm{q}, J 6.5$, $\mathrm{CH}), 1.55\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 1.50\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 0.95(9 \mathrm{H}$, $\left.\left.\mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.10(6 \mathrm{H}, \mathrm{s}, \mathrm{SiCH})_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 131.76$ ${ }_{85}(\mathrm{Ar}), 131.70(\mathrm{Ar}), 128.29(\mathrm{Ar}), 128.19(\mathrm{Ar}), 128.14(\mathrm{Ar}), 106.30$ $(\mathrm{C} \equiv \mathrm{C}), 89.35(\mathrm{C} \equiv \mathrm{C}), 84.73(\mathrm{C} \equiv \mathrm{C}), 63.47(\mathrm{C} \equiv \mathrm{C}), 63.45(\mathrm{C} \equiv \mathrm{C})$, 26.04, 22.10, 21.79. -4.70 $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.

## Iron cyclone complexes 7b/c.

${ }_{90}(R)$-Dipropargylic ether $\mathbf{8 b}\left(\mathbf{8}: \mathrm{R}^{1}=(\mathrm{tBu})_{3} \mathrm{SiMe}_{2}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right.$, $96 \%$ ee) ( $0.206 \mathrm{~g}, 0.69 \mathrm{mmol}$ ) and $\mathrm{Fe}(\mathrm{CO})_{5}\left(0.27 \mathrm{~cm}^{3}, 2.05\right.$ $\mathrm{mmol})$ were dissolved in dry toluene $\left(3 \mathrm{~cm}^{3}\right)$ and heated at 130 ${ }^{\circ} \mathrm{C}$ for 24 h after which time the solution was allowed to cool to room temperature and the solvent was removed under reduced ${ }_{95}$ pressure. The brown residue was filtered through celite using a 9:1 mixture of hexane:ethyl acetate and subsequent purification by column chromatography on silica with a gradient elution from $100 \%$ petroleum ether to $40: 60$ petroleum ether:ethyl acetate gave two diastereomers of product, which were separated. The 100 measured data is in agreement with that previously reported for the racemic compound. ${ }^{10}$ Minor diastereomer, yellow solid (0.026 $\mathrm{g}, 0.056 \mathrm{mmol}, 8 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{26}-47.0$ (c 0.05 in $\mathrm{CHCl}_{3}$ ); $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.99-8.05 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.29-7.39 ( $3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}, \mathrm{Ar}$ ), $5.56\left(1 \mathrm{H}, \mathrm{q}, J 6.8 \mathrm{~Hz}, \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right), 4.81(1 \mathrm{H}, \mathrm{d}, J 13.2 \mathrm{~Hz}$, $\left.{ }_{105} \mathrm{CH}_{2}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, J 13.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.53\left(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) 0.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Major diastereomer, brown oil $(0.140 \mathrm{~g}$, $0.300 \mathrm{mmol}, 44 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}+20.0$ (c 0.05 in $\mathrm{CHCl}_{3}$ ); $\delta_{\mathrm{H}}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.47-7.53 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.29-7.41 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 5.38 $110\left(1 \mathrm{H}, \mathrm{q}, J 6.0 \mathrm{~Hz}, \mathrm{CC} H\left(\mathrm{CH}_{3}\right) \mathrm{O}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 13.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $\left.4.73(1 \mathrm{H}, \mathrm{d}, J 13.2 \mathrm{~Hz}, \mathrm{CH})_{2}\right), 1.65\left(3 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.97$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) 0.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

Iron cyclone complexes 7d/e.

These complexes (two diastereomers) were synthesised by the same procedure as for 7d/e using ( $R$ )-dipropargylic ether $\mathbf{8 c}$ ( $\mathbf{8}$ : $\mathrm{R}^{1}=\mathrm{TMS}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}, 96 \%$ ee) $(0.390 \mathrm{~g}, 1.53 \mathrm{mmol})$ and $\mathrm{Fe}(\mathrm{CO})_{5}\left(0.60 \mathrm{~cm}^{3}, 4.56 \mathrm{mmol}\right)$ and were purified by column 5 chromatography on silica gel with a gradient elution from $100 \%$ petroleum ether to 80:20 petroleum ether:ethyl acetate to give two diastereomers of product which were separated, as brown oils. The measured data is in agreement with that previously reported for the racemic material. ${ }^{10}$ Minor diastereomer $(0.111 \mathrm{~g}$, $\left.{ }_{10} 0.262 \mathrm{mmol}, 17 \%\right) ;[\alpha]_{\mathrm{D}}{ }^{28}-166.0$ (c 0.05 in $\mathrm{CHCl}_{3}$ ); $\delta_{\mathrm{H}}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.99-8.03 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.29-7.40 (3H, m, Ar), 5.57 $\left(1 \mathrm{H}, \mathrm{q}, J 6.4 \mathrm{~Hz}, \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, J 12.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $4.71\left(1 \mathrm{H}, \mathrm{d}, J 12.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.52\left(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.33$ ( $\left.9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Major diastereomer ( $0.240 \mathrm{~g}, 0.566 \mathrm{mmol}, 37$ $15 \%) ;[\alpha]_{\mathrm{D}}{ }^{28}+101.0\left(\mathrm{c} 0.05\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48-$ $7.52(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.30-7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.36(1 \mathrm{H}, \mathrm{q}, J 6.4 \mathrm{~Hz}$, $\left.\mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 13.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.71(1 \mathrm{H}, \mathrm{d}, J 13.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 1.65\left(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

## ${ }_{20}$ Iron cyclone complexes 7f/g.

These complexes (two diastereomers) were synthesised by the same procedure as for 7b/c using ( $R$ )-dipropargylic ether $\mathbf{8 d}$ (8: $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}, 96 \%$ ee $)(0.165 \mathrm{~g}, 0.63 \mathrm{mmol})$ and $\mathrm{Fe}(\mathrm{CO})_{5}\left(0.25 \mathrm{~cm}^{3}, 1.90 \mathrm{mmol}\right)$ and were purified by column
25 chromatography on silica with a gradient elution from $100 \%$ petroleum ether to 80:20 petroleum ether:ethyl acetate to give two diastereomers of product, which were separated. The measured data is in agreement with that previously reported for the racemic material. ${ }^{10}$ Minor diastereomer; brown powder $(0.026$ ${ }_{30} \mathrm{~g}, 0.061 \mathrm{mmol}, 10 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}-75.0$ (c 0.01 in $\mathrm{CHCl}_{3}$ ); $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.06-8.11(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.86-7.93(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, 7.32-7.45 ( $6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), $5.64\left(1 \mathrm{H}, \mathrm{q}, J 6.4 \mathrm{~Hz},\left(\mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right), 5.17\right.$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 1.54\left(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz},\left(\mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right)\right.$. A broad resonance exists from $6.5-7.6 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum that ${ }_{35}$ has not been assigned; this may be due to paramagnetic impurities. Major diastereomer; brown powder $(0.039 \mathrm{~g}, 0.091$ mmol, $14 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}+23.0$ (c 0.05 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) 7.90-7.96 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.53-7.59 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.32-7.45 $(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.40\left(1 \mathrm{H}, \mathrm{q}, J 6.0 \mathrm{~Hz},\left(\mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right), 5.25(1 \mathrm{H}, \mathrm{d}, J\right.$ $\left.{ }_{40} 13.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.03\left(1 \mathrm{H}, \mathrm{d}, J 13.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right) 1.67(3 \mathrm{H}, \mathrm{d}, J 6.0$ $\mathrm{Hz},\left(\mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right)$. A broad resonance exists from 6.6-7.8 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum that has not been assigned; this may be due to paramagnetic impurities.

## ${ }_{45}$ Ruthenium cyclone complex 12a/b.

A sealed tube was charged with 8c (8: $\mathrm{R}^{1}=\mathrm{Me}_{3} \mathrm{Si}, \mathrm{R}^{2}=\mathrm{Ph}$, $\left.\mathrm{R}^{3}=\mathrm{Me}\right)(0.3813 \mathrm{~g}, 1.4894 \mathrm{mmol}, 3 \mathrm{eq}$.$) and \mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.3173 \mathrm{~g}$, $0.4965 \mathrm{mmol}, 1$ eq.) in acetonitrile ( $5 \mathrm{~cm}^{3}$ ) and the reaction heated to $100{ }^{\circ} \mathrm{C}$ over 2 days. The solvent was removed in vacuo ${ }_{50}$ and redissolved in DCM then filtered to remove any unreacted $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and purified by column chromatography (EtOAc/pet. ether (40-60) 1:10) to afford the major 12a ( $0.1787,0.404 \mathrm{mmol}$, $27 \%$ ) and minor 12b ( $0.0768 \mathrm{~g}, 0.1738 \mathrm{mmol}, 12 \%$ ) diastereoisomers. Configurations assigned by analogy with Fe 55 complexes; Major; $m / z$ (ESI) $471[\mathrm{M}+1]^{+}, 493[\mathrm{M}+23]^{+} ;[\alpha]_{\mathrm{D}}{ }^{28}$ +79.20 (c $0.11 \mathrm{CHCl}_{3}$ ); (Found (ESI): M+H 471.0218 $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{RuSi}$ requires 471.0201); (Found (ESI): $\mathrm{M}+\mathrm{Na}$ $493.0039 \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NaO}_{5} \mathrm{RuSi}$ requires 493.0021); $v_{\max }$ 2075, 2006
and $1626 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.43(2 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Ar})$, ${ }_{60} 7.35(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}), 7.30-7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.29(1 \mathrm{H}, \mathrm{q}, J 6.0$, $\left.\mathrm{OCHCH}_{3}\right), 4.83-4.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 1.59(3 \mathrm{H}, \mathrm{d}, J 6.0$, $\left.\mathrm{OCHCH}_{3}\right), 0.32\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.82$ (C=O), 179.00 (C=O), 130.44 (ipso, Ar), 129.80 (CH, Ar), 128.35 (CH, Ar), 127.64 (CH, Ar), 114.40, 112.85, 80.04, 74.81 ${ }_{65}\left(\mathrm{OCHCH}_{3}\right), 67.27,62.54,23.73\left(\mathrm{OCHCH}_{3}\right),-0.51\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$; Minor $[\alpha]_{\mathrm{D}}{ }^{28}-8.30\left(\mathrm{c} 0.112 \mathrm{CHCl}_{3}\right.$ ); $m / z$ (ESI) $471[\mathrm{M}+1]^{+}, 493$ $[\mathrm{M}+23]^{+}$; (Found (ESI): $\mathrm{M}+\mathrm{H} 471.0200 \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{RuSi}$ requires 471.0201); (Found (ESI): $\mathrm{M}+\mathrm{Na} 493.0019 \quad \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NaO}_{5} \mathrm{RuSi}$ requires 493.0021); $v_{\max } 2080,2020$ and $1989 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ $\left.{ }_{70} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.97(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.35$ ( $2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}$ ), $7.29-$ $7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.60\left(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{OCHCH}_{3}\right), 4.89(1 \mathrm{H}, \mathrm{dd}, J$ $12.6,1.0, \mathrm{OCHH}), 4.78(1 \mathrm{H}, \mathrm{d}, J 12.6, \mathrm{OCH} H), 1.43(3 \mathrm{H}, \mathrm{d}, J$ $\left.6.5, \mathrm{OCHCH}_{3}\right), 0.33\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 193.94 ( $\mathrm{C}=\mathrm{O}$ ), 180.55 ( $\mathrm{C}=\mathrm{O}$ ), 132.74 (ipso, Ar), 128.72 (CH, $\left.{ }_{75} \mathrm{Ar}\right), 127.36(\mathrm{CH}, \mathrm{Ar}), 126.54(\mathrm{CH}, \mathrm{Ar}), 110.96,109.65,76.48$ $\left(\mathrm{OCHCH}_{3}\right), 75.74,70.64,66.33,63.86,27.90,19.06,-0.40$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

## Ruthenium cyclone complex 12c/d.

${ }_{80}$ A sealed tube was charged with $8\left(\mathrm{R}^{1}=(\mathrm{iPr})_{3} \mathrm{Si}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right)$ ( $0.5898 \mathrm{~g}, 1.798 \mathrm{mmol}, 3 \mathrm{eq}$.$) and \mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.3830 \mathrm{~g}, 0.5994$ $\mathrm{mmol}, 1 \mathrm{eq}$.$) in acetonitrile ( 6 \mathrm{~cm}^{3}$ ) and the reaction heated to 100 ${ }^{\circ} \mathrm{C}$ over 2 days. The solvent was removed in vacuo and redissolved in DCM and filtered to remove any unreacted ${ }_{85} \mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and purified by column chromatography ( $\mathrm{EtOAc} /$ pet. ether (40-60) 1:10) to afford only one diastereoisomer cleanly ( $0.1197 \mathrm{~g}, 0.2213 \mathrm{mmol}, 12 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}+39.11$ (c $0.140 \mathrm{CHCl}_{3}$ ); $\mathrm{m} / \mathrm{z}$ (ESI) $555[\mathrm{M}+1]^{+}$, $577[\mathrm{M}+23]^{+}$; (Found (ESI): M+H $555.1148 \mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{RuSi}$ requires 555.1142); $v_{\max } 2944,2860$, ${ }_{90}$ 2077, 2023, 1999 and $1622 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.37-7.32$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.29-7.24 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.21-7.15 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 5.22 $\left(1 \mathrm{H}, \mathrm{q}, J 6.0, \mathrm{OCHCH}_{3}\right), 4.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 1.53(3 \mathrm{H}, \mathrm{d}, J 6.0$, $\left.\mathrm{OCHCH}_{3}\right), 1.32\left(3 \mathrm{H}\right.$, sept., $\left.J 7.5, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 1.15-1.08$ $\left(18 \mathrm{H}, \mathrm{m} \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.83(\mathrm{C}=\mathrm{O})$, ${ }_{95} 178.95$ (C=O), 130.38 (ipso, Ar), 129.89 (CH, Ar), $128.37(\mathrm{CH}$, $\mathrm{Ar}), 127.62(\mathrm{CH}, \mathrm{Ar}), 116.19,111.69,79.37,74.72\left(\mathrm{OCHCH}_{3}\right)$, 68.36, 62.42, 23.66, 19.12, 12.32.

## Ruthenium cyclone complex 12e/f.

${ }_{100}$ A sealed tube was charged with $\mathbf{8 d}\left(8: \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}\right)$ $\left(0.3580 \mathrm{~g}, 1.3769 \mathrm{mmol}, 3\right.$ eq.) and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.2933 \mathrm{~g}, 0.4586$ mmol, 1 eq.) in acetonitrile ( $5 \mathrm{~cm}^{3}$ ) and the reaction was heated to $100{ }^{\circ} \mathrm{C}$ over 2 days. The solvent was removed in vacuo and redissolved in DCM and filtered to remove any unreacted ${ }_{105} \mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and purified by column chromatography (EtOAc/pet. ether (40-60) 1:20) to afford only one diastereoisomer cleanly ( $0.1371 \mathrm{~g}, 0.2898 \mathrm{mmol}, 21 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}-61.96$ (c $0,092 \mathrm{CHCl}_{3}$ ); $\mathrm{m} / \mathrm{z}$ (ESI) $475[\mathrm{M}+1]^{+}$, $497[\mathrm{M}+23]^{+}$; (Found (ESI): M+H $475.0123 \mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{Ru}$ requires 475.0120); $v_{\text {max }}$ 2074, 1999 and ${ }_{110} 1622 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.87(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.50$ $(2 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Ar}), 7.43-7.36(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.35-7.28(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $5.34\left(1 \mathrm{H}, \mathrm{dq}, J 1.5,6.0, \mathrm{CHCH}_{3}\right), 5.25(1 \mathrm{H}, \mathrm{d}, J 12.6, \mathrm{CHH}), 5.07$ $(1 \mathrm{H}, \mathrm{dd}, J 2.0,12.6, \mathrm{CH} H), 1.61\left(3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 193.80 (C=O), 132.39 (ipso, Ar), 130.08 (ipso, Ar), $115128.88(\mathrm{CH}, \mathrm{Ar}), 128.47(\mathrm{CH}, \mathrm{Ar}), 127.85(\mathrm{CH}, \mathrm{Ar}), 127.76(\mathrm{CH}$,

Ar), 127.00 (CH, Ar), 109.03 (quat.), 107.13 (quat.), 77.98 (quat.), $74.92(\mathrm{CH}), 74.06$ (quat.), 67.75 (quat.), $23.74\left(\mathrm{CH}_{3}\right)$.

## Ruthenium cyclone complex 13a/b.

5 A sealed tube was charged with the dipropargyl ether precursor of ligand $\mathbf{1 3 a} / \mathbf{b}\left(0.083 \mathrm{~g}, 0.26 \mathrm{mmol}, 3 \mathrm{eq}\right.$.) and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.056$ $\mathrm{g}, 0.0 .887 \mathrm{mmol}, 1$ eq.) in acetonitrile $\left(1 \mathrm{~cm}^{3}\right)$ and the reaction heated to $100^{\circ} \mathrm{C}$ over 2 days. The solvent was removed in vacuo and redissolved in DCM and filtered to remove any unreacted ${ }_{10} \mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and purified by column chromatography (EtOAc/hexane 1:20) to afford only one diastereoisomer cleanly $(0.040 \mathrm{~g}, 0.0805 \mathrm{mmol}, 31 \%) ;[\alpha]_{\mathrm{D}}{ }^{28}+38.60\left(\mathrm{c} 0.020 \mathrm{CHCl}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (ESI) $527[\mathrm{M}]^{+}$; (Found (ESI): M+H $527.0822 \mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{RuSi}$ requires 527.0828); $v_{\max } 2075,1999$ and $1638 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ ${ }_{15} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.44-7.40 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.37-7.32 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.29-7.26 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.22\left(1 \mathrm{H}, \mathrm{qd}, J 6.0,1.5, \mathrm{CHCH}_{3}\right) 5.00$ $\left(1 \mathrm{H}, \mathrm{qd}, J 6.0,1.5, \mathrm{CHCH}_{3}\right), 1.58\left(3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{CHCH}_{3}\right), 1.55$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{CHCH}_{3}\right), 0.99\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.51(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 0.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.91$ $20(\mathrm{C}=\mathrm{O}), 180.04(\mathrm{C}=\mathrm{O}), 130.34$ (ipso, Ar), $130.07(\mathrm{CH}, \mathrm{Ar}) 128.38$ (CH, Ar), 127.70 (CH, Ar), 119.99, 116.40, 78.22, 74.82, 73.51, 60. 83, 31.56, 28.06, 27.23, 23.76, 22.63, 18.81, -2.04, -3.67.

## (R)-Alcohol 11d.

25 A flask was charged with $(R)$-Alpine borane solution $\left(45.08 \mathrm{~cm}^{3}\right.$, $22.54 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF) and the solvent was removed in vacuo. The flask was cooled to $0^{\circ} \mathrm{C}$ and 3 -(t-butyldimethylsilyl)-1-phenyl-prop-2-ynone $10 d(5.00 \mathrm{~g}, 20.49 \mathrm{mmol})$ was added dropwise. After 4 days acetylaldehyde $\left(5 \mathrm{~cm}^{3}\right)$ was added. After 1 ${ }_{30} \mathrm{~h}, \mathrm{NaOH}_{(\mathrm{aq})}\left(10 \mathrm{~cm}^{3}, 5 \mathrm{~N}\right)$, THF $\left(10 \mathrm{~cm}^{3}\right)$ and hydrogen peroxide $\left(11.5 \mathrm{~cm}^{3}, 30 \% \mathrm{wt}\right)$ added. CAUTION: addition of peroxide is very exothermic. After heating to $40{ }^{\circ} \mathrm{C}$ for 4 h , in air, the reaction was extracted using $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 30 \mathrm{~cm}^{3}\right)$ and the combined organic phases washed using brine ( $30 \mathrm{~cm}^{3}$ ), dried over $\mathrm{MgSO}_{4}$ 35 and the solvent removed in vacuo. Purification by column chromatography (EtOAc/ hexane $0.5 \%-5 \%$ ) afforded a colourless oil (Rf 0.13 ( $10 \%$ EtOAc/hexane), $3.67 \mathrm{~g}, 14.918 \mathrm{mmol}, 73 \%, 96$ \% ee); $[\alpha]_{\mathrm{D}}{ }^{28}+4.2$ (c 1.054 in $\mathrm{CHCl}_{3}$ ); $m / z \quad 269.2[\mathrm{M}+23]^{+}$; (Found (ESI): $\quad \mathrm{M}+\mathrm{Na}$ 269.1333. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaOSi}$ requires ${ }_{40}$ 269.1332); $v_{\text {max }} 3362(\mathrm{OH}), 2926,2857,1671,1446$ and $1003 \mathrm{~cm}^{-}$ ${ }^{1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.56(2 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{Ar}), 7.36(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $5.47(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 0.99\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.17\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 140.36$ (ipso, Ar), $128.49(\mathrm{CH}, \mathrm{Ar}), 128.26$ (CH, Ar), $126.70(\mathrm{CH}, \mathrm{Ar}), 105.69$ (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 89.81 (quat.,
$\left.{ }_{45} \mathrm{C} \equiv \mathrm{C}\right), \quad 64.90 \quad(\mathrm{CH}(\mathrm{OH})), 26.03 \quad\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.50 \quad$ (quat., $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-4.71\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{Si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-7.64$ (s, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. The ee was determined by chiral GC; cyclodextrin CB column; $96 \%$ ee, $100{ }^{\circ} \mathrm{C}, \mathrm{H}_{2}, 15 \mathrm{psi}, 83.70$ min $(S), 85.99 \min (R) .{ }^{17}$
${ }_{50}$
(R)-Dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Si}(\mathrm{tBu}) \mathrm{Me}_{2}, \mathrm{R}^{3}=\mathrm{Ph}\right)$.

To a solution of $(R)$-alcohol $11 d(1.1606 \mathrm{~g}, 6.0976 \mathrm{mmol} 1 \mathrm{eq}$.$) in$ THF $\left(20 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(0.2881 \mathrm{~g}, 60 \%$ in mineral oil, $7.2019 \mathrm{mmol}, 1.1 \mathrm{eq}$.). The reaction mixture was stirred for ${ }_{55} 30 \mathrm{~min}$ at $0{ }^{\circ} \mathrm{C}$ after which propargylic bromide was added ( 0.85 $\mathrm{cm}^{3}, 80 \% \mathrm{wt}$ in toluene, $1.17 \mathrm{~g}, 7.86 \mathrm{mmol}, 1.2$ eq.) and the ice bath removed. After 4 h the reaction was quenched using saturated $\mathrm{NaHCO}_{3(\text { aq })}$ solution $\left(20 \mathrm{~cm}^{3}\right)$ and extracted using $\mathrm{Et}_{2} \mathrm{O}$
( $3 \times 10 \mathrm{~cm}^{3}$ ). The combined organic fractions were dried over ${ }_{60} \mathrm{MgSO}_{4}$ and the solvent removed in vacuo. Purification column chromatography ( $\mathrm{EtOAc} /$ hexane $0 \%$ to $1 \%$ ) afforded a colourless oil $(1.121 \mathrm{~g}, 3.948 \mathrm{mmol}, 60 \%) ;[\alpha]_{\mathrm{D}}{ }^{28}+27.3(\mathrm{c} 0.68$ in $\mathrm{CHCl}_{3}$ ); m/z 307.2 [M+23] ${ }^{+}$; (Found (ESI): M+Na 307.1483, $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaOSi}$ requires 307.1489); $v_{\text {max }}$ 2952, 2927, 2884, 2855, ${ }_{65} 1250$ and $1059 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.56(2 \mathrm{H}, \mathrm{d}, J 7.2$, Ar), 7.41-7.34 (3H, m, Ar), $5.45(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 4.41\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} J\right.$ $2.3, J 15.7$, OCHH), $4.29\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} J 2.3, J 15.7, \mathrm{OCH} H\right), 2.48$ $\left(1 \mathrm{H}, \mathrm{t},{ }^{4} \mathrm{~J} 2.3, \mathrm{C} \equiv \mathrm{C} H\right), 0.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.17(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.65$ (ipso, Ar$), 128.69(\mathrm{CH}$, ${ }_{70} \mathrm{Ar}$ ), $128.44(\mathrm{CH}, \mathrm{Ar}), 126.75(\mathrm{CH}, \mathrm{Ar}), 102.50$ (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 91.77 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 74.82 (quat. $\mathrm{C} \equiv \mathrm{C}$ ), $70.44(\mathrm{ArCH}), 55.26$ $\left(\mathrm{OCH}_{2}\right), 26.05\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.55\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.70\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta_{\mathrm{Si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-7.51\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }_{75}$ (R)-Dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{TMS}, \mathrm{R}^{2}=\mathrm{Si}(\mathrm{tBu}) \mathrm{Me}_{2}, \mathrm{R}^{3}=\mathrm{Ph}\right)$. A flask was charged with ( $R$ )-dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{H}\right.$, $\left.\mathrm{R}^{2}=\mathrm{Si}(\mathrm{tBu}) \mathrm{Me}_{2}, \mathrm{R}^{3}=\mathrm{Ph}\right)(0.500 \mathrm{~g}, 1.7606 \mathrm{mmol})$ in $\operatorname{THF}\left(12 \mathrm{~cm}^{3}\right)$ and cooled to $-78{ }^{\circ} \mathrm{C}$. Addition of $\mathrm{nBuLi}\left(1.21 \mathrm{~cm}^{3}, 1.94 \mathrm{mmol}\right.$, 1.6 M in hexane, 1.1 eq .) affording a dark green solution. After 1 ${ }_{80} \mathrm{~h}$ TMSCl ( $0.27 \mathrm{~cm}^{3}, 2.11 \mathrm{mmol}, 1.2$ eq.) was added and the ice bath removed after 5 min . After 30 min the reaction mixture colour had changed from green to yellow. After 3 h the reaction was quenched using water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ $10 \mathrm{~cm}^{3}$ ), the organic fractions combined and dried over $\mathrm{MgSO}_{4}$ 85 and the solvent removed under reduced pressure to afford a yellow oil which was purified using column chromatography (EtOAc/Hexane 0 to $20 \%$ ) to afford a pale yellow oil $(0.4300 \mathrm{~g}$, $1.208 \mathrm{mmol}, 69 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}+27.3$ (c 0.68 in $\mathrm{CHCl}_{3}$ ); $\mathrm{m} / \mathrm{z}$ (ESI) $379.2[\mathrm{M}+23]^{+}$; (Found (ESI): M+Na 379.1881. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NaOSi}_{2}$ ${ }_{90}$ requires 379.1884 ); $v_{\text {max }} 2954,2928,2898,2856,2173,1249$ and $1059 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.56(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.40-$ $7.31(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.45(1 \mathrm{H}, \mathrm{s}, \operatorname{ArCH}), 4.40(1 \mathrm{H}, \mathrm{d}, J 15.8$, $\mathrm{OCHH}), 4.28(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{OCH} H), 0.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.21\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.17\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, ${ }_{95} \mathrm{CDCl}_{3}$ ) 137.77 (ipso, Ar), $128.50(\mathrm{CH}, \mathrm{Ar}), 128.41$ (CH, Ar), $127.83(\mathrm{CH}, \mathrm{Ar}), 102.70$ (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 101.11 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 91.81 (quat. $\mathrm{C} \equiv \mathrm{C}$ ), 91.60 (quat. $\mathrm{C} \equiv \mathrm{C}), 70.39(\mathrm{ArCH}), 56.07\left(\mathrm{OCH}_{2}\right)$, $26.08\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.56\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.16\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3},-4.70\right.$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{Si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-7.57\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, ${ }_{100} 17.73\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
(R)-Dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{TIPS}, \mathrm{R}^{2}=\mathrm{Si}(\mathrm{tBu}) \mathrm{Me}_{2}, \mathrm{R}^{3}=\mathrm{Ph}\right.$. A flask was charged with $(R)$-dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{H}\right.$, $\left.\mathrm{R}^{2}=\mathrm{Si}(\mathrm{tBu}) \mathrm{Me}_{2}, \mathrm{R}^{3}=\mathrm{Ph}\right)(0.500 \mathrm{~g}, 1.7606 \mathrm{mmol})$ in $\operatorname{THF}\left(10 \mathrm{~cm}^{3}\right)$ 105 and cooled to $-78{ }^{\circ} \mathrm{C}$. Addition of $\mathrm{nBuLi}\left(1.35 \mathrm{~cm}^{3}, 2.17 \mathrm{mmol}\right.$, 1.6 M in hexane, 1.2 eq.) afforded a dark green solution. After 30 $\min \operatorname{TIPSCl}\left(0.50 \mathrm{~cm}^{3}, 2.36 \mathrm{mmol}, 1.3 \mathrm{eq}\right.$.) was added and the ice bath removed after 30 mins. After 5 h the reaction was quenched using water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 10 \mathrm{~cm}^{3}\right)$, the organic fractions combined and dried over $\mathrm{MgSO}_{4}$ and the solvent removed under reduced pressure to afford a yellow oil which was purified using column chromatography (EtOAc/Hexane 0 to $5 \%$ ) to afford a bright yellow oil $(0.219 \mathrm{~g}$, $0.53 \mathrm{mmol}, 30 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}+50.1$ (c 0.825 in $\mathrm{CHCl}_{3}$ ); $\mathrm{m} / \mathrm{z}$ (ESI) 115463.3 [M+23] ${ }^{+}$; (Found (ESI): $\mathrm{M}+\mathrm{Na} 463.2821 . \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{NaOSi}_{2}$ requires 463.2823); $v_{\max }$ 2928, 2889, 2863, 1462, 1249, 1060,

1038,1027 and $1007 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.56-7.53(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 7.40-7.32(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.55(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 4.51(1 \mathrm{H}, \mathrm{d}, J$ 16.1, ОСHH), $4.31(1 \mathrm{H}, \mathrm{d}, J 16.1, \mathrm{OCHH}), 1.08(21 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)\left(0.97\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.17\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)\right.$; ${ }_{5} \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.97$ (ipso, Ar), $128.49(\mathrm{CH}, \mathrm{Ar}), 128.44$ (CH, Ar), $127.87(\mathrm{CH}, \mathrm{Ar}), 102.74$ (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 102.70 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 91.49 (quat. $\mathrm{C} \equiv \mathrm{C}$ ), 88.42 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 69.75 ( ArCH ), $\left.56.22\left(\mathrm{OCH}_{2}\right), 26.09 \mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.61\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$, $16.58 \quad\left(\mathrm{Si} C\left(\mathrm{CH}_{3}\right)_{3}\right), \quad 11.18 \quad\left(\mathrm{CH}_{3}, \quad \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right)_{3}\right), \quad-4.68$ ${ }_{10}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{Si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-1.86\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right),-7.57$ ( $\left.\mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
(R)-Dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Si}(\mathrm{tBu}) \mathrm{Me}_{2}, \mathrm{R}^{3}=\mathrm{Ph}\right)$.

A flask was charged with ( $R$ )-dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{H}\right.$, $\left.{ }_{15} \mathrm{R}^{2}=\mathrm{Si}(\mathrm{tBu}) \mathrm{Me}_{2}, \mathrm{R}^{3}=\mathrm{Ph}\right)(0.500 \mathrm{~g}, 1.7606 \mathrm{mmol}), \mathrm{PhI}\left(0.26 \mathrm{~cm}^{3}\right.$, $2.34 \mathrm{mmol}, 1.3$ eq.) and $\mathrm{Et}_{3} \mathrm{~N}\left(6.3 \mathrm{~cm}^{3}\right)$. To this mixture was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(27.4 \mathrm{mg}, 0.0391 \mathrm{mmol}, 0.02$ eq.) and after 5 $\min \mathrm{CuI}(3.7 \mathrm{mg}, 0.0195 \mathrm{mmol}, 0.01$ eq.) was added and the reaction heated to $50{ }^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was then 20 filtered and the remaining amine removed in vacuo. Purification by column chromatography ( $\mathrm{EtOAc} / \mathrm{Hexane} 0$ to $2 \%$ ) afforded a light yellow oil ( $0.3693 \mathrm{~g}, 1.03 \mathrm{mmol}, 58 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}+58.0$ (c 1.02 in $\mathrm{CHCl}_{3}$ ); $\mathrm{m} / \mathrm{z}$ (ESI) $361.2[\mathrm{M}+1]^{+} ; 383.1[\mathrm{M}+23]^{+}$; (Found (ESI): $\mathrm{M}+\mathrm{Na}, 383.1802 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NaOSi}$ requires 383.1802); $v_{\text {max }}$
${ }_{25} 2952,2927,2884,2855$ and $1057 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.56 ( $2 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{Ar}$ ), 7.50-7.48 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.41-7.31 ( $6 \mathrm{H}, \mathrm{m}$, Ar), $5.53(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 4.63(1 \mathrm{H}, \mathrm{d}, J 15.7, \mathrm{OCHH}), 4.51(1 \mathrm{H}$, d, J 15.7, OCHH), $1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.82$ (ipso, Ar$), 131.81(\mathrm{CH}$, $\left.{ }_{30} \mathrm{Ar}\right), 128.57(\mathrm{CH}, \mathrm{Ar}), 128.53(\mathrm{CH}, \mathrm{Ar}), 128.45(\mathrm{CH}, \mathrm{Ar})$, $128.25(\mathrm{CH}, \mathrm{Ar}), 127.81$ (CH, Ar), 122.60 (ipso, Ar), 102.83 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 91.70 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 86.62 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 84.71 (quat., $\mathrm{C} \equiv \mathrm{C}), 70.50(\mathrm{ArCH}), 56.10\left(\mathrm{OCH}_{2}\right), 26.08\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $16.56\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.67\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{Si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-7.52$ ${ }_{35}\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

## (R)-Alcohol 11e.

( $R$ )-Alpine borane solution ( 0.5 M , in THF, $22 \mathrm{mmol}, 44 \mathrm{~cm}^{3}$ ) was introduced to a flask and the solvent removed in vacuo. The flask ${ }_{40}$ was cooled to $0{ }^{\circ} \mathrm{C}$ and 3 -(tri(isopropyl)silyl)-1-phenyl-prop-2-yn-1-one 10e ( $5.72 \mathrm{~g}, 20.0 \mathrm{mmol}$ ) was added dropwise. The ice bath was removed and after 4 days the reaction was quenched using acetaldehyde ( $4.5 \mathrm{~cm}^{3}$ ). After 1 h THF ( $10 \mathrm{~cm}^{3}$ ) and $\mathrm{NaOH}_{(\text {aq) }}\left(5 \mathrm{~N}, 10 \mathrm{~cm}^{3}\right)$ were added and the reaction mixture put 45 in a water bath and $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \mathrm{wt} \%, 11.5 \mathrm{~cm}^{3}\right)$ was added carefully. CAUTION: very exothermic. After complete addition of the peroxide the reaction was heated for 4 h in air followed by extraction with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic fractions were then washed with brine $\left(30 \mathrm{~cm}^{3}\right)$ and dried over
${ }_{50} \mathrm{MgSO}_{4}$. Removal of the solvent in vacuo afforded a colourless oil which on purification by column chromatography (hexane/EtOAc) afforded a colourless oil ( $2.6031 \mathrm{~g}, 9.0385$ mmol, $45 \%$ yield, $97 \%$ ee); $[\alpha]_{\mathrm{D}}{ }^{28}+5.81$ (c $1.32, \mathrm{CHCl}_{3}$ ); $m / z$ 287.2 [M-1], 309.2 [M+23]; (Found (ESI): M-H 287.1816 ${ }_{55} \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{OSi}$ requires 287.1826, $\mathrm{M}+\mathrm{Na} 309.1631 \quad \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaOSi}$ requires 309.1645 ); $v_{\max } 3354(\mathrm{OH})$, 2941, 2891, 2864 and 2169 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.6-7.56(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) 7.42-7.29(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 5.49(1 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{ArCH}), 2.17(1 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{OH}), 1.09$
$\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 128.54\right.$ (ipso, Ar$)$, ${ }_{60} 128.51(\mathrm{CH}, \mathrm{Ar}), 128.30(\mathrm{CH}, \mathrm{Ar}), 126.77(\mathrm{CH}, \mathrm{Ar}), 106.87$ (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 98.02 (quat., $\mathrm{C} \equiv \mathrm{C}), 65.11(\mathrm{CH}(\mathrm{OH})), 18.59$ $\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 11.15\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right)$; The ee was determined by GC using cyclodextrin CB column; $97 \% \mathrm{ee}, 170{ }^{\circ} \mathrm{C}, \mathrm{H}_{2}, 15$ psi, $61.96 \mathrm{~min}(S), 63.68 \mathrm{~min}(R) .{ }^{17}$
${ }_{6}$
( $R$ )-Dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Si}(\mathrm{iPr})_{3}, \mathrm{R}^{3}=\mathrm{Ph}\right)$.
To a solution of $(R)$-alcohol 11e ( $1.000 \mathrm{~g}, 3.472 \mathrm{mmol} 1 \mathrm{eq}$. ) in THF $\left(11 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(0.1527 \mathrm{~g}, 60 \%$ on mineral oil, $3.8194 \mathrm{mmol}, 1.1$ eq.). The reaction mixture was stirred for 7030 min at $0{ }^{\circ} \mathrm{C}$ after which propargylic bromide was added ( 0.45 $\mathrm{cm}^{3}, 80 \% \mathrm{wt}$ in toluene, $0.619 \mathrm{~g}, 4.166 \mathrm{mmol}, 1.2$ eq.) and the ice bath removed. After 4 h the reaction was quenched using saturated $\mathrm{NHCO}_{3 \text { (aq) }}$ solution ( $20 \mathrm{~cm}^{3}$ ) and extracted using $\mathrm{Et}_{2} \mathrm{O}$ ( $3 \times 10 \mathrm{~cm}^{3}$ ). The combined organic fractions were dried over ${ }_{75} \mathrm{MgSO}_{4}$ and the solvent removed in vacuo. Purification by column chromatography ( $\mathrm{EtOAc} /$ hexane 0 to $1 \%$ ) afforded a colourless oil ( $0.9155 \mathrm{~g}, 2.8083 \mathrm{mmol}, 81 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}+24.25$ (c 1.048 , $\mathrm{CHCl}_{3}$ ); m/z 349.2 [M+23] ${ }^{+}$; (Found (ESI): $349.1953 \mathrm{M}+\mathrm{Na}$ $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NaOSi}$ requires 349.1958); $v_{\text {max }}$ 2941, 2924, 2864, 2169, ${ }_{80} 2031$ and $1461 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.59-7.56(2 \mathrm{H}, \mathrm{m}$, Ar) 7.40-7.31 (3H, m, Ar), $5.48(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 4.44\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} J\right.$ $2.4, J 15.6, \mathrm{OCHH}), 4.31\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} J 2.4, J 15.6, \mathrm{OCHH}\right), 2.47$ $\left(1 \mathrm{H}, \mathrm{t},{ }^{4} \mathrm{~J} 2.4, \mathrm{C} \equiv \mathrm{CH}\right), 1.10\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}(100\right.$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 137.79 (ipso, Ar), 128.47 (CH, Ar), $128.38(\mathrm{CH}$, ${ }_{85} \mathrm{Ar}$ ), $127.75(\mathrm{CH}, \mathrm{Ar}), 103.62$ (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 89.95 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), $79.35(\mathrm{C} \equiv \mathrm{CH}), 74.72$ (quat., $\mathrm{C} \equiv \mathrm{C}), 70.50(\mathrm{ArCH}), 55.19\left(\mathrm{OCH}_{2}\right)$, $18.58\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 11.16\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) ; \delta \mathrm{Si}(99 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)-1.53\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)\right)$.
${ }_{90}(\boldsymbol{R})$-Dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{Me}_{3} \mathrm{Si}, \mathrm{R}^{2}=\mathrm{Si}(\mathrm{iPr})_{3}, \mathrm{R}^{3}=\mathrm{Ph}\right)$.
To a solution of $(R)$-dipropargylic ether $\mathbf{8}\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Si}(\mathrm{iPr})_{3}\right.$, $\left.\mathrm{R}^{3}=\mathrm{Ph}\right)(0.190 \mathrm{~g}, 0.582 \mathrm{mmol})$ in THF $\left(3 \mathrm{~cm}^{3}\right)$ cooled to $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{nBuLi}\left(0.4 \mathrm{~cm}^{3}, 0.6404 \mathrm{mmol}, 1.6 \mathrm{M}\right.$ in hexane, 1.1 eq.) affording a dark green solution. After $1 \mathrm{~h} \mathrm{TMSCl}\left(0.089 \mathrm{~cm}^{3}\right.$, ${ }_{95} 0.699 \mathrm{mmol}, 1.2$ eq.) was added and the ice bath removed after 5 $\min$. After 6 h the reaction was quenched using water $\left(3 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 4 \mathrm{~cm}^{3}\right)$, the organic fractions were combined and dried over $\mathrm{MgSO}_{4}$ and the solvent removed under reduced pressure to afford a yellow oil which was purified using
100 column chromatography (EtOAc/Hexane 0 to $1 \%$ ) to afford a yellow oil ( $0.1362 \mathrm{~g}, 0.3424 \mathrm{mmol}, 59 \%) ;[\alpha]_{\mathrm{D}}{ }^{28}+42.2$ (c 1.106, $\mathrm{CHCl}_{3}$ ); m/z $421.2[\mathrm{M}+23]^{+}$; (Found (ESI): $421.2354 \mathrm{M}+\mathrm{Na}$ $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{NaOSi}_{2}$ requires 421.2353); $v_{\text {max }}$ 2944, 2893, 2865, 1719 and $1250 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.58(2 \mathrm{H}, \mathrm{d}, J 7.04, \mathrm{Ar})$, ${ }_{105} 7.41-7.31(3 H, \mathrm{~m}, \mathrm{Ar}), 5.49(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 4.44(1 \mathrm{H}, \mathrm{d}, J 15.8$, $\mathrm{OCHH}), 4.31(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{OCH} H), 1.10(21 \mathrm{H}, \mathrm{m}$, $\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 137.92 (ipso, Ar), 128.44 (CH, Ar), 128.38 (CH, Ar), 127.85 (CH, Ar), 103.78 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 101.17 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 91.77 $110(\mathrm{C} \equiv \mathrm{CH}), 89.85$ (quat., $\mathrm{C} \equiv \mathrm{C}) 70.43(\mathrm{ArCH}) 56.02\left(\mathrm{OCH}_{2}\right) 18.62$ $\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 11.19\left(\mathrm{CH}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right),-0.16\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
(R)-Dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{Si}(\mathrm{tBu}) \mathrm{Me}_{2}, \mathrm{R}^{2}=\mathrm{Si}\left(\mathrm{iPr}_{3}, \mathrm{R}^{3}=\mathrm{Ph}\right)\right.$. To a solution of ( $R$ )-dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Si}(\mathrm{iPr})_{3}\right.$, $\left.{ }_{115} \mathrm{R}^{3}=\mathrm{Ph}\right)(0.400 \mathrm{~g}, 1.227 \mathrm{mmol})$ in THF $\left(7 \mathrm{~cm}^{3}\right)$ cooled to $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{nBuLi}\left(0.84 \mathrm{~cm}^{3}, 1.3497 \mathrm{mmol}, 1.6 \mathrm{M}\right.$ in hexane, 1.1
eq.) affording a dark green solution. After 1 h TBDMSCl ( 0.222 $\mathrm{g}, 1.472 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added and the ice bath removed after 5 min . After 16 h the reaction was quenched using water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 10 \mathrm{~cm}^{3}\right)$, the organic fractions were 5 combined and dried over $\mathrm{MgSO}_{4}$ and the solvent removed under reduced pressure to afford a crude yellow oil $(0.4263 \mathrm{~g}, 0.9689$ mmol, $79 \%$ ); $[\alpha]_{\mathrm{D}}{ }^{28}+65.9$ (c $0.50, \mathrm{CHCl}_{3}$ ); m/z $463.2[\mathrm{M}+23]^{+}$; (Found (ESI): $\quad \mathrm{M}+\mathrm{Na} \quad 463.2819 \quad \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{NaOSi}_{2} \quad$ requires 463.2823); $v_{\max }$ 2942, 2927, 2891, 2863, 2173, 1461 and $1063 \mathrm{~cm}^{-}$ ${ }_{10}{ }^{1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.58(2 \mathrm{H}, \mathrm{d}, J 7.04, \mathrm{Ar}) 7.41-7.31(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 5.49(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 4.44(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{OCHH}) 4.31$ $(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{OCHH}) 1.10\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right) 0.20(6 \mathrm{H}, \mathrm{s}\right.$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.92$ (ipso, Ar), $128.44(\mathrm{CH}$, Ar), $128.38(\mathrm{CH}, \mathrm{Ar}), 127.85(\mathrm{CH}, \mathrm{Ar}), 103.78$ (quat., $\mathrm{C} \equiv \mathrm{C}$ ), ${ }_{15} 101.17$ (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 91.77 ( $\mathrm{CH}, \mathrm{C} \equiv \mathrm{CH}$ ), 89.85 (quat., $\mathrm{C} \equiv \mathrm{C}$ ) $70.43(\mathrm{CH}(\mathrm{OH})) 56.02\left(\mathrm{OCH}_{2}\right) 18.62\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 11.19$ $\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right),-0.16\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$;
(R)-Dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Si}(\mathrm{iPr})_{3}, \mathrm{R}^{3}=\mathrm{Ph}\right)$. 20 A flask was charged with ( $R$ )-dipropargylic ether $8\left(\mathrm{R}^{1}=\mathrm{H}\right.$, $\left.\mathrm{R}^{2}=\operatorname{Si}(\mathrm{iPr})_{3}, \mathrm{R}^{3}=\mathrm{Ph}\right)(0.500 \mathrm{~g}, 1.534 \mathrm{mmol}), \mathrm{PhI}\left(0.21 \mathrm{~cm}^{3}, 1.84\right.$ mmol, 1.2 eq.) and $\mathrm{Et}_{3} \mathrm{~N}\left(6 \mathrm{~cm}^{3}\right)$. To this mixture was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(21.5 \mathrm{mg}, 0.0306 \mathrm{mmol}, 0.02$ eq. $)$ and after 5 min $\mathrm{CuI}(2.9 \mathrm{mg}, 0.0153 \mathrm{mmol}, 0.01 \mathrm{eq}$.) was added and the reaction 25 heated to $50^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was then filtered and the remaining amine removed in vacuo. Purification by column chromatography ( $\mathrm{EtOAc} / \mathrm{Hexane} 0$ to $0.5 \%$ ) afforded a light yellow oil $(0.5874 \mathrm{~g}, 1.461 \mathrm{mmol}, 95 \%) ;[\alpha]_{\mathrm{D}}{ }^{28}+45.0(\mathrm{c}$ $\left.1.088, \mathrm{CHCl}_{3}\right) ; m / z 403.2[\mathrm{M}+1]^{+}, 425.2[\mathrm{M}+23]^{+} ; v_{\text {max }} 2942$, ${ }_{30} 2890,2864,1762,1644,1450$ and $1240 \mathrm{~cm}^{-1}$; (Found (ESI): $425.2265 \mathrm{M}+\mathrm{Na} \mathrm{C} 27 \mathrm{H}_{34} \mathrm{NaOSi}$ requires 425.2271 ); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.50(2 \mathrm{H}, \mathrm{d}, J 7.50, \mathrm{Ar}), 7.49-7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.40-7.31$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.56(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 4.67(1 \mathrm{H}, \mathrm{d}, J 15.7, \mathrm{OCHH})$, $4.54(1 \mathrm{H}, \mathrm{d}, J 15.7, \mathrm{OCH} H), 1.12\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\right.$ ${ }_{35}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.00$ (ipso, Ar), 131.83 (CH, Ar), 128.47 (CH, Ar), 128.45 (CH, Ar), $128.42(\mathrm{CH}, \mathrm{Ar}), 128.25$ (CH, Ar), 127.84 (CH, Ar), 122.65 (ipso, Ar), 103.87 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 90.05 (quat., $\mathrm{C} \equiv \mathrm{C}$ ), 86.54 (quat., $\mathrm{C} \equiv C$ ), 84.07 (quat., $\mathrm{C} \equiv \mathrm{C}$ ) 70.57 $\left(\begin{array}{llllll}(\mathrm{CH}(\mathrm{OH})) & 56.04 & \left(\mathrm{OCH}_{2}\right) & 18.63 \quad\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), & 11.20\end{array}\right.$ ${ }_{40}\left(\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right) ; \delta_{\mathrm{Si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-1.53(\mathrm{~s})$.

## Ruthenium cyclone complex $15 b$.

A pressure tube was charged with $(R)$-dipropargylic ether 8 $\left(\mathrm{R}^{1}=\right.$ TMS, $\left.\mathrm{R}^{2}=\mathrm{Si}(\mathrm{tBu}) \mathrm{Me}_{2}, \mathrm{R}^{3}=\mathrm{Ph}\right),(1.000 \mathrm{~g}, 2.808 \mathrm{mmol} 3 \mathrm{eq}$.), 45 acetonitrile $\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.5986 \mathrm{~g}, 0.9363 \mathrm{mmol}, 1$ eq.) and purged under a steady stream of $\mathrm{N}_{2}$. The tube was then sealed and heated to $100{ }^{\circ} \mathrm{C}$. After 2 d the reaction mixture was cooled, carefully depressurised and the solvent removed in vacuo. The resulting black semisolid was dissolved in DCM $\left(4 \mathrm{~cm}^{3}\right)$ and ${ }_{50}$ filtered through a cotton wool plug and loaded onto a short silica column (EtOAc/Hexane 0 to $10 \%$ ) to afford a yellow solid ( $0.4522 \mathrm{~g}, 0.7947 \mathrm{mmol}, 28 \%$ ). The metal complex was characterised as a mixture of two diasteroisomers in an approximate ratio of $3: 1 ; \mathrm{m} / \mathrm{z} 571.0[\mathrm{M}+1]^{+}$; (Found (ESI): ${ }_{55} 571.0918 \mathrm{M}+\mathrm{H} \mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{RuSi}_{2}$ requires 571.0911); $v_{\max }$ 2951, 2927, 2894, 2881, 2853, 2077, 2019, 1197 and $1632 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.49-7.44 (1.5H, m, Ar) 7.41-7.36 (3H, m, Ar), 7.20-7.16 ( $0.5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), $5.85(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 4.98(1 \mathrm{H}, \mathrm{d}, J 12.1)$,
$4.85\left(0.75 \mathrm{H}\right.$, dd, $2.3,12.8, \mathrm{OCH}_{2}$, major) $4.90(0.25 \mathrm{H}, \mathrm{d}, J 12.5$, ${ }_{60} \mathrm{OCH}_{2}$, minor), $0.99(6 \mathrm{H}, \mathrm{s}, \mathrm{SitBu}), 0.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.34$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.30\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $0.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.80$ (quat., $\mathrm{C}=\mathrm{O}$ ), 185.80 (quat., $\mathrm{C}=\mathrm{O}$ ), 138.75 (ipso, Ar), 138.48 (ipso, Ar), 129.59 (CH, Ar), 129.41 (CH, Ar), 129.14 (CH, Ar), 128.42 (CH, $\left.{ }_{65} \mathrm{Ar}\right), 128.32(\mathrm{CH}, \mathrm{Ar}), 127.67(\mathrm{CH}, \mathrm{Ar}), 119.91$ (quat.), 119.29 (quat.), 117.12 (quat.), $82.56(\mathrm{CH}, \mathrm{ArCH}), 81.33(\mathrm{CH}, \mathrm{ArCH})$, 67.13 (quat./ $\mathrm{CH}_{2}$ ), 66.92 (quat. $/ \mathrm{CH}_{2}$ ), 64.33 (quat./ $/ \mathrm{CH}_{2}$ ), 64.20 (quat. $/ \mathrm{CH}_{2}$ ), $\quad 27.67 \quad\left(\mathrm{CH} / \mathrm{CH}_{3}\right), \quad 27.25 \quad\left(\mathrm{CH} / \mathrm{CH}_{3}\right), \quad 19.00$ (quat. $/ \mathrm{CH}_{2}$ ), $\quad 17.74 \quad$ (quat. $/ \mathrm{CH}_{2}$ ), $\quad 14.10 \quad\left(\mathrm{CH} / \mathrm{CH}_{3}\right), \quad-0.28$ $70\left(\mathrm{CH} / \mathrm{CH}_{3}\right),-0.45\left(\mathrm{CH} / \mathrm{CH}_{3}\right),-3.15\left(\mathrm{CH} / \mathrm{CH}_{3}\right),-4.66\left(\mathrm{CH}_{3}\right),-4.78$ $\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{Si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.03(\mathrm{~s}, \mathrm{TBS}), 3.20(\mathrm{~s}, \mathrm{TBS}),-3.72$ ( $\mathrm{s}, \mathrm{TMS}$ ).

## Ruthenium cyclone complex 15a.

75 A pressure tube was charged with ( $R$ )-dipropargylic ether $\mathbf{8}$ $\left(\mathrm{R}^{1}=\right.$ TIPS, $\left.\mathrm{R}^{2}=\mathrm{Si}(\mathrm{tBu}) \mathrm{Me}_{2}, \mathrm{R}^{3}=\mathrm{Ph}\right)(0.1395 \mathrm{~g}, 0.3170 \mathrm{mmol} 2$ eq.), acetonitrile ( $1 \mathrm{~cm}^{3}$ ) and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.1013 \mathrm{~g}, 0.1585 \mathrm{mmol}$, 1 eq.) and purged under a steady stream of $\mathrm{N}_{2}$. The tube was then sealed and heated to $100{ }^{\circ} \mathrm{C}$. After 2 d the reaction mixture was ${ }_{80}$ cooled, carefully depressurised and the solvent removed in vacuo. The resulting black semisolid was dissolved in DCM ( $2 \mathrm{~cm}^{3}$ ) and filtered through a cotton wool plug and loaded onto a short silica column (EtOAc/Hexane 0 to $10 \%$ ) to afford a yellow solid $(0.1404 \mathrm{~g}, 0.2151 \mathrm{mmol}, 68 \%)$. The metal complex was 85 characterised as a mixture of two diasteroisomers in an approximate ratio of $3: 1 ; \mathrm{m} / \mathrm{z} 655.1[\mathrm{M}+1]^{+}, 677.1[\mathrm{M}+23]^{+}$; (Found (ESI): $655.1861 \mathrm{M}+\mathrm{H} \mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{5} \mathrm{RuSi}_{2}$ requires 655.1851); $v_{\text {max }}$ 2946, 2926, 2862, 2077, 2019, 1998 and1629 $\mathrm{cm}^{-1}$; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.50-7.47 ( $\left.1.5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}\right), 7.42-7.37(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, ${ }_{90} 7.22-7.20(0.5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.85(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 5.00(1 \mathrm{H}, \mathrm{d}, J 12.8$, $\mathrm{OCHH}), 4.88(0.75 \mathrm{H}, \mathrm{dd}, J$ 2.1, 12.8, ОСHH, major), 4.79 $(0.25 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{OCH} H$, minor), 1.41 ( 3 H, septet, $J 7.2$, $\left.\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.18\left(18 \mathrm{H}\right.$, pseudo $\left.\mathrm{t}, J 7.2, \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98(9 \mathrm{H}$, $\mathrm{s}, \mathrm{SitBu}), 0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}(100$
${ }_{95} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 193.76 (quat., $\mathrm{C}=\mathrm{O}$ ), 185.60 (quat., $\mathrm{C}=\mathrm{O}$ ), 138.53 (ipso, Ar), $129.62(\mathrm{CH}, \mathrm{Ar}), 129.41(\mathrm{CH}, \mathrm{Ar}), 129.14(\mathrm{CH}, \mathrm{Ar})$, $128.95(\mathrm{CH}, \mathrm{Ar}), 128.54(\mathrm{CH}, \mathrm{Ar}), 128.51(\mathrm{CH}, \mathrm{Ar}), 128.32(\mathrm{CH}$, Ar), 127.70 ( $\mathrm{CH}, \mathrm{Ar}$ ), 121.93 (quat.), 118.11 (quat.), $82.02(\mathrm{CH})$, $81.25(\mathrm{CH}), 67.88$ (quat./ $\mathrm{CH}_{2}$ ), 64.91 (quat./ $\mathrm{CH}_{2}$ ), 64.01 $100\left(\right.$ quat. $\left./ \mathrm{CH}_{2}\right), 27.81\left(\mathrm{CH} / \mathrm{CH}_{3}\right), 27.39\left(\mathrm{CH} / \mathrm{CH}_{3}\right), 19.67\left(\mathrm{CH}_{3}\right)$, $19.33\left(\mathrm{CH}_{3}\right), 19.20\left(\mathrm{CH}_{3}\right), 19.15\left(\mathrm{CH}_{3}\right), 19.07$ (quat.), 15.46 $\left(\mathrm{CH} / \mathrm{CH}_{3}\right), 12.37\left(\mathrm{CH} / \mathrm{CH}_{3}\right), 12.29\left(\mathrm{CH} / \mathrm{CH}_{3}\right),-3.08\left(\mathrm{CH}_{3}\right),-4.40$ $\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{Si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.22(\mathrm{~s}, \mathrm{TBS}), 3.31(\mathrm{~s}, \mathrm{TBS}), 2.51$ ( $\mathrm{s}, \mathrm{TIPS}$ ).
105

## Ruthenium cyclone complex 15 c .

A pressure tube was charged with $(R)$-dipropargylic ether $\mathbf{8}$ $\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Si}(\mathrm{tBu}) \mathrm{Me}_{2}, \mathrm{R}^{3}=\mathrm{Ph}\right),(0.250 \mathrm{~g}, 0.6944 \mathrm{mmol} 2 \mathrm{eq}$.$) ,$ acetonitrile $\left(1.5 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.2219 \mathrm{~g}, 0.3472 \mathrm{mmol}, 1$ 110 eq.) and purged under a steady stream of $\mathrm{N}_{2}$. The tube was then sealed and heated to $100{ }^{\circ} \mathrm{C}$. After 3 d the reaction mixture was cooled, carefully depressurised and the solvent removed in vacuo. The resulting black semisolid was dissolved in DCM $\left(2 \mathrm{~cm}^{3}\right)$ and filtered through a cotton wool plug and loaded onto a short silica 115 column (EtOAc/Hexane; 0 to $10 \%$ ) to afford a yellow solid $(0.1799 \mathrm{~g}, 0.3139 \mathrm{mmol}, 45 \%)$. The metal complex was
characterised as a mixture of two diasteroisomers in an approximate ratio of $4: 1 ; \mathrm{m} / \mathrm{z} 575.0[\mathrm{M}+1]^{+}$; (Found (ESI): M +H $575.0832 \mathrm{C}_{28} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{RuSi}$ requires 575.0829); (Found (ESI): $\mathrm{M}+\mathrm{Na} 597.0654 \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NaO}_{5} \mathrm{RuSi}$ requires 597.0649); $v_{\text {max }}$ 2952, $52928,2883,2854,2064,2020$ and $2009 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.87(0.3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{Ar}), 7.83(1.6 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{Ar}), 7.54-$ $7.51(1.5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.44-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.32-7.24(1.5 \mathrm{H}, \mathrm{m}$, Ar) $5.90(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 5.40(0.85 \mathrm{H}, \mathrm{dd}, J 0.9,12.9$, OCHH, major), $5.34(0.15 \mathrm{H}, \mathrm{dd}, J 1.4,12.5, \mathrm{OCHH}$, minor) $5.23(0.15 \mathrm{H}$, ${ }_{10} \mathrm{~d}, J 12.5$, OCHH, minor), $5.15(0.85 \mathrm{H}$, dd, $J 2.4,12.9$, ОСHH, major), $1.03(7.65 \mathrm{H}, \mathrm{s}, \mathrm{SitBu}$, major), $0.66(1.35 \mathrm{H}, \mathrm{s}, \mathrm{SitBu}$, minor), $0.35\left(2.35 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right.$, major $), 0.33(0.65 \mathrm{H}, \mathrm{s}$, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$, minor), $-0.03\left(0.5 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right.$, minor), $-0.74(2.5 \mathrm{H}, \mathrm{s}$, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)$, major); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.78$ (quat, $\mathrm{C}=\mathrm{O}$ ), ${ }_{15} 193.72$ (quat $\mathrm{C}=\mathrm{O}$ ), 180.08 (quat, $\mathrm{C}=\mathrm{O}$ ), 138.32 (ipso, Ar ), 138.08 (ipso, Ar), 132.20 (ipso, Ar), 132.15 (ipso, Ar), 129.78 (CH, Ar), $129.56(\mathrm{CH}, \mathrm{Ar}), 129.19(\mathrm{CH}, \mathrm{Ar}), 128.88(\mathrm{CH}, \mathrm{Ar})$, $128.86(\mathrm{CH}, \mathrm{Ar}), 128.54(\mathrm{CH}, \mathrm{Ar}), 128.38(\mathrm{CH}, \mathrm{Ar}), 127.79(\mathrm{CH}$, $\mathrm{Ar}), 127.76(\mathrm{CH}, \mathrm{Ar}), 127.13(\mathrm{CH}, \mathrm{Ar}), 127.11(\mathrm{CH}, \mathrm{Ar}), 115.10$
20 (quat.), 113.14 (quat.), $82.62(\mathrm{CH}), \quad 81.46 \quad(\mathrm{CH}), \quad 75.53$ (quat./ $/ \mathrm{CH}_{2}$ ), 67.63 (quat./ $/ \mathrm{CH}_{2}$ ), 67.30 (quat./ $/ \mathrm{CH}_{2}$ ), $\quad 62.34$ (quat./ $/ \mathrm{CH}_{2}$ ), 34.64 (quat. $/ \mathrm{CH}_{2}$ ), 31.56 (quat./ $/ \mathrm{CH}_{2}$ ), 27.72 $\left(\mathrm{CH} / \mathrm{CH}_{3}\right), \quad 27.26\left(\mathrm{CH} / \mathrm{CH}_{3}\right), \quad 25.26 \quad\left(\right.$ quat. $\left./ \mathrm{CH}_{2}\right), \quad 22.63$ (quat./ $\mathrm{CH}_{2}$ ), $19.00\left(\right.$ quat. $\left./ \mathrm{CH}_{2}\right), 14.10\left(\mathrm{CH}_{3}\right),-2.96\left(\mathrm{CH}_{3}\right),-4.64$ ${ }_{25}\left(\mathrm{CH}_{3}\right),-4.72\left(\mathrm{CH}_{3}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{Si}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.22(\mathrm{~s}, \mathrm{TBS})$, 3.31 (s, TBS), 2.51 (s, TIPS).

## Ruthenium cyclone complex 15 e .

A pressure tube was charged with $(R)$-dipropargylic ether $\mathbf{8}$ $30\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\operatorname{Si}(\operatorname{iPr})_{3}, \mathrm{R}^{3}=\mathrm{Ph}\right)(0.3906 \mathrm{~g}, 0.9716 \mathrm{mmol} 2$ eq. $)$, acetonitrile $\left(3 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.3104 \mathrm{~g}, 0.4858 \mathrm{mmol}, 1$ eq.) and purged under a steady stream of $\mathrm{N}_{2}$. The tube was then sealed and heated to $100{ }^{\circ} \mathrm{C}$. After 2 d the reaction mixture was cooled, carefully depressurised and the solvent removed in vacuo.
${ }_{35}$ The resulting black semisolid was dissolved in DCM $\left(2 \mathrm{~cm}^{3}\right)$ and filtered through a cotton wool plug and loaded onto a short silica column ( $\mathrm{EtOAc} /$ Hexane 0 to $5 \%$ ) to afford a yellow solid (Rf $0.2,0.1994 \mathrm{~g}, 0.3242 \mathrm{mmol}, 33 \%)$. Found to be a 3:2 mixture of diastereoisomers; m/z $617.1[\mathrm{M}+1]^{+}$; (Found (ESI): M+H ${ }_{40} 617.1307 \mathrm{C}_{31} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{RuSi}$ requires 617.1300); (Found (ESI): $\mathrm{M}+\mathrm{Na} 639.1128 \mathrm{C}_{31} \mathrm{H}_{34} \mathrm{NaO}_{5} \mathrm{RuSi}$ requires 639.1119); $v_{\text {max }}$ 2944, 2864, 2076, 2001 and $1636 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.87-7.81$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.53-7.48 (1.3H, m, Ar), 7.41-7.35 (4.5H, m, Ar), 7.31-7.23 ( $2.2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 5.97 ( $0.4 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}$, minor), 5.92 ${ }_{45}(0.6 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}$, major), $5.43(0.6 \mathrm{H}, \mathrm{d}, J 12.8, \mathrm{OCHH}$, major), $5.27(0.4 \mathrm{H}, \mathrm{d}, J 12.4, \mathrm{OCHH}$, minor), $5.21(0.4 \mathrm{H}, \mathrm{d}, J 12.4$, OCHH, minor), $5.15(0.6 \mathrm{H}, \mathrm{dd}, J 2 \mathrm{~Hz}, 12.8$, OCHH, major), 1.10 $\left(7.5 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.05\left(3.75 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.00$ $\left(3.75 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94\left(6 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$;
${ }_{50} \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.89$ (quat., $\mathrm{C}=\mathrm{O}$ ), 193.80 (quat., $\mathrm{C}=\mathrm{O}$ ), 180.18 (quat., $\mathrm{C}=\mathrm{O}$ ), 179.75 (quat., $\mathrm{C}=\mathrm{O}$ ), 138.44 (ipso, Ar ), 137.96 (ipso, Ar), 132.22 (ipso, Ar), 132.20 (ipso, Ar), 129.67 (CH, Ar), $129.53(\mathrm{CH}, \mathrm{Ar}), 129.06(\mathrm{CH}, \mathrm{Ar}), 128.87(\mathrm{CH}, \mathrm{Ar})$, 128.39 (CH, Ar), 128.22 (CH, Ar) 127.73 (CH, Ar), $127.54(\mathrm{CH}$,
$\left.{ }_{55} \mathrm{Ar}\right), 127.19(\mathrm{CH}, \mathrm{Ar}), 127.16(\mathrm{CH}, \mathrm{Ar}), 113.27$ (quat.), 113.11 (quat.), 107.34 (quat.), $83.00(\mathrm{ArCH}), 81.85(\mathrm{ArCH}), 75.36$ (quat.), 67.13 (quat.), 67.08 (quat.), 61.88 (quat.), 19.76 $\left(\mathrm{CH}_{3} / \mathrm{CH}\right)$, $19.24\left(\mathrm{CH}_{3} / \mathrm{CH}\right)$, $19.18\left(\mathrm{CH}_{3} / \mathrm{CH}\right)$, $19.11\left(\mathrm{CH}_{3} / \mathrm{CH}\right)$,
$12.86\left(\mathrm{CH}_{3} / \mathrm{CH}\right), 12.78\left(\mathrm{CH}_{3} / \mathrm{CH}\right) ; \delta \mathrm{Si}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.22(\mathrm{~s}$, ${ }_{60}$ TBS), 3.31 ( $\mathrm{s}, \mathrm{TBS}$ ), 2.51 ( s, TIPS).

## Ruthenium cyclone complex 15d.

A pressure tube was charged with $(R)$-dipropargylic ether $\mathbf{8}$ $\left(\mathrm{R}^{1}=\mathrm{TMS}, \mathrm{R}^{2}=\operatorname{Si}(\mathrm{iPr})_{3}, \mathrm{R}^{3}=\mathrm{Ph}\right)(0.400 \mathrm{~g}, 1.005 \mathrm{mmol} 3 \mathrm{eq}$.$) ,$ ${ }_{65}$ acetonitrile $\left(3 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.2141 \mathrm{~g}, 0.3350 \mathrm{mmol}, 1$ eq.) and purged under a steady stream of $\mathrm{N}_{2}$. The tube was then sealed and heated to $100{ }^{\circ} \mathrm{C}$. After 3 d the reaction mixture was cooled, carefully depressurised and the solvent removed in vacuo. The resulting black semisolid was dissolved in DCM $\left(2 \mathrm{~cm}^{3}\right)$ and ${ }_{70}$ filtered through a cotton wool plug and loaded onto a short silica column (EtOAC/Hexane 0 to $5 \%$ ) to afford a yellow solid ( $0.1542 \mathrm{~g}, 0.2524 \mathrm{mmol}, 25 \%$ ). The metal complex was characterised as a mixture of two diasteroisomers in an approximate ratio of $7: 3 ; m / z 613.1[\mathrm{M}+1]^{+}$; (Found (ESI): MH+ ${ }_{75} 613.1375 \mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{RuSi}_{2}$ requires 613.1381); $v_{\max }$ 2943, 2891, 2864, 2047 and $1195 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48-7.43$ (1.5H, m, Ar), 7.39-7.33 (3H, m, Ar), 7.19-7.14 (0.5H, m, Ar), 5.92 ( $0.3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}$, minor), 5.86 ( $0.7 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}$, major), 5.00 $(0.7 \mathrm{H}, \mathrm{s}, J 12.8, \mathrm{OCHH}$, major), $4.92(0.3 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{OCHH}$, ${ }_{80}$ minor), $4.83(0.7 \mathrm{H}, \mathrm{dd}, J 2.1, J 12.8$, OCHH, major), $4.78(0.3 \mathrm{H}$, d, $J$ 12.5, OCHH, minor), 1.13-1.02 (11H, m, SiiPr), 0.99-0.94 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{SiiPr}$ ), 0.90-0.86 (5H, m, SiiPr), 0.33 ( $2.7 \mathrm{H}, \mathrm{s}, \mathrm{TMS}$, minor), $0.29\left(6.3 \mathrm{H}, \mathrm{s}, \mathrm{TMS}\right.$, major); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 193.85 (quat., $\mathrm{C}=\mathrm{O}$ ), 185.98 (quat., $\mathrm{C}=\mathrm{O}$ ), 185.91 (quat., $\mathrm{C}=\mathrm{O}$ ), ${ }_{85} 138.44$ (quat., Ar), 138.79 (quat., Ar), 138.67 (quat., Ar), 129.49 (CH, Ar), 129.38 (CH, Ar), 128.26 (CH, Ar), 128.13 (CH, Ar), 127.43 ( $\mathrm{CH}, \mathrm{Ar}$ ), 119.85 (quat.), 118.49 (quat.), 116.93 (quat.), 114.58 (quat.), 82.90 ( ArCH ), 81.69 ( ArCH ), 67.12 (quat.), 66.64 (quat.), 66.58 (quat.), 65.77 (quat.), 64.43 (quat.), 64.05 (quat.), ${ }_{90} 19.69\left(\mathrm{CH}_{3} / \mathrm{CH}\right), 19.18\left(\mathrm{CH}_{3} / \mathrm{CH}\right), 19.12\left(\mathrm{CH}_{3} / \mathrm{CH}\right), 19.00$ $\left(\mathrm{CH}_{3} / \mathrm{CH}\right)$, $17.68\left(\mathrm{CH}_{3} / \mathrm{CH}\right), 12.80\left(\mathrm{CH}_{3} / \mathrm{CH}\right), 12.76\left(\mathrm{CH}_{3} / \mathrm{CH}\right)$ 12.27( $\left.\mathrm{CH}_{3} / \mathrm{CH}\right),-0.42\left(\mathrm{CH}_{3}, \mathrm{TMS}\right),-0.51\left(\mathrm{CH}_{3}, \mathrm{TMS}\right) ; \delta \mathrm{Si}(99$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ), 4.22 ( $\mathrm{s}, \mathrm{TBS}$ ), 3.31 ( $\mathrm{s}, \mathrm{TBS}$ ), 2.51 ( $\mathrm{s}, \mathrm{TIPS}$ ).

## ${ }_{95}$ Ruthenium cyclone complex $15 f$.

A pressure tube was charged with $(R)$-dipropargylic ether 8 $\left(\mathrm{R}^{1}=\right.$ TBDMS, $\left.\mathrm{R}^{2}=\operatorname{Si}(\mathrm{iPr})_{3}, \mathrm{R}^{3}=\mathrm{Ph}\right)(0.3331 \mathrm{~g}, 0.7571 \mathrm{mmol} 3$ eq.), acetonitrile ( $3 \mathrm{~cm}^{3}$ ) and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(0.1613 \mathrm{~g}, 0.2523 \mathrm{mmol}$, 1 eq.) and purged under a steady stream of $\mathrm{N}_{2}$. The tube was then 100 sealed and heated to $100{ }^{\circ} \mathrm{C}$. After 3 d the reaction mixture was cooled, carefully depressurised and the solvent removed in vacuo. The resulting black semisolid was dissolved in DCM $\left(2 \mathrm{~cm}^{3}\right)$ and filtered through a cotton wool plug and loaded onto a short silica column (EtOAc/Hexane 0 to $5 \%$ ) to afford a sticky red solid ${ }_{105}(0.104 \mathrm{~g}, 0.1596 \mathrm{mmol}, 21 \%)$. The metal complex was characterised as a mixture of two diasteroisomers in an approximate ratio of $3: 2 ; \mathrm{m} / \mathrm{z} 655.1[\mathrm{M}+1]^{+}$; (Found (ESI): M+H $655.1850 \mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{5} \mathrm{RuSi}_{2}$ requires 655.1851); $v_{\text {max }}$ 2945, 2927, 2890, 2863, 2079, 2022, 2002 and $1620 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, ${ }_{110} \mathrm{CDCl}_{3}$ ) 7.47-7.43 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.39-7.34 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ ), 7.20-7.16 $(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.93(0.45 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}$, minor $), 5.86(0.55 \mathrm{H}, \mathrm{s}$, ArCH, major), $5.01(0.55 \mathrm{H}$, dd, $J 0.8,12.8, \mathrm{OCHH}$, major), 4.93 $(0.45 \mathrm{H}, \mathrm{dd}, J 1.2,12.5, \mathrm{OCHH}$, minor), $4.85(0.55 \mathrm{H}, \mathrm{dd}, J 2.2$, 12.8 , ОСНH, major), $4.78(0.45 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{OCH} H$, minor), 115 1.19-0.6 $\left(30 \mathrm{H}, \mathrm{m}, \mathrm{Si}^{\mathrm{i}} \mathrm{Pr}_{3}\right.$ and $\left.\mathrm{Si}^{\mathrm{t}} \mathrm{Bu}\right), 0.43\left(1.35 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right.$, minor), $0.41\left(1.65 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right.$, major), $0.12\left(1.35 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right.$,
minor), $0.10\left(1.65 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right.$, major); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 193.84 (quat., $\mathrm{C}=\mathrm{O}$ ), 185.43 (quat., $\mathrm{C}=\mathrm{O}$ ), 185.34 (quat., $\mathrm{C}=\mathrm{O}$ ), 138.68 (ipso, Ar), 138.31 (ipso, Ar), 129.53 (CH, Ar), 129.37 (CH, Ar), $129.00(\mathrm{CH}, \mathrm{Ar}), 128.56(\mathrm{CH}, \mathrm{Ar}), 128.51(\mathrm{CH}, \mathrm{Ar})$, ${ }_{5} 128.34$ (CH, Ar), 128.14 (CH, Ar), 127.54 (CH, Ar), 127.39 (CH, $\mathrm{Ar}), 121.64$ (quat.), 117.79 (quat.), $82.74(\mathrm{ArCH}), 81.70(\mathrm{ArCH})$, 66.97 (quat./ $\mathrm{CH}_{2}$ ), 66.85 (quat./ $\mathrm{CH}_{2}$ ), 66.82 (quat./ $/ \mathrm{CH}_{2}$ ), 65.65 (quat./ $\mathrm{CH}_{2}$ ), 63.91 (quat./ $\mathrm{CH}_{2}$ ), 61.87 (quat./ $\mathrm{CH}_{2}$ ), $27.42\left(\mathrm{CH}_{3}\right.$ ), $27.37\left(\mathrm{CH}_{3}\right), 19.67\left(\mathrm{CH}_{3} / \mathrm{CH}\right), 19.20\left(\mathrm{CH}_{3} / \mathrm{CH}\right), 19.03\left(\mathrm{CH}_{3} / \mathrm{CH}\right)$, ${ }_{10} 18.84$ (quat.), 18.78 (quat.), $18.56\left(\mathrm{CH}_{3} / \mathrm{CH}\right), 12.76\left(\mathrm{CH}_{3} / \mathrm{CH}\right)$, $12.63\left(\mathrm{CH}_{3} / \mathrm{CH}\right) \quad 11.20 \quad\left(\mathrm{CH}_{3} / \mathrm{CH}\right), 11.12\left(\mathrm{CH}_{3} / \mathrm{CH}\right), 10.95$ $\left(\mathrm{CH}_{3} / \mathrm{CH}\right),-4.34\left(\mathrm{CH}_{3}, \mathrm{TBS}\right),-4.70\left(\mathrm{CH}_{3}, \mathrm{TBS}\right)-4.81 ; \delta \mathrm{Si}(99$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ), 4.22 ( $\mathrm{s}, \mathrm{TBS}$ ), 3.31 ( $\mathrm{s}, \mathrm{TBS}$ ), 2.51 ( s, TIPS).
${ }_{15}$ Reduction of Acetophenone using iron catalysts and FA/TEA. Complex 7a ( $7.8 \mathrm{mg}, 19.1 \mu \mathrm{~mol}$ ), trimethylamine- N -oxide ( 2.1 $\mathrm{mg}, 18.9 \mu \mathrm{~mol})$ and acetophenone ( $23.0 \mathrm{mg}, 0.191 \mathrm{mmol}$ ) were dissolved in 5:2 formic acid:triethylamine $\left(0.2 \mathrm{~cm}^{3}\right)$ and heated at $28{ }^{\circ} \mathrm{C}$ for 18 h . The reaction was monitored over time by GC 20 (Chrompac cyclodextrin- $\beta-236 \mathrm{M} 50 \mathrm{M}$ column, $\mathrm{T}=130^{\circ} \mathrm{C}$, inj T $=220{ }^{\circ} \mathrm{C}$, det $\mathrm{T}=220{ }^{\circ} \mathrm{C}$, 15 psi He carrier gas). $\mathrm{R}_{\mathrm{T}}$ : Acetophenone: 13.4 minutes. 1-Phenylethyl formate: 15.1 ( $S$ ), $15.5(R)$ min. 1-Phenylethanol: $17.4(R), 18.0(S)$ min. ${ }^{1}$ The above procedure was repeated using other complexes, temperatures and ${ }_{25}$ reaction times. The product configurations were assigned by comparison to previously quoted data ${ }^{1}$ and use of authentic reference samples.

## Reduction of Acetophenone using iron catalysts and ${ }^{i} \mathrm{PrOH}$.

${ }_{30}$ Complex 7a ( $7.8 \mathrm{mg}, 19.1 \mu \mathrm{~mol}$ ), trimethylamine- N -oxide $(2.1$ $\mathrm{mg}, 18.9 \mu \mathrm{~mol}$ ) and acetophenone ( $23.0 \mathrm{mg}, 0.191 \mathrm{mmol}$ ) were dissolved in ${ }^{i} \mathrm{PrOH}\left(0.96 \mathrm{~cm}^{3}\right)$ and heated at $28{ }^{\circ} \mathrm{C}$ for 18 h . The reaction was monitored over time by GC (Chrompac cyclodextrin- $\beta-236 \mathrm{M} 50 \mathrm{M}$ column, $\mathrm{T}=130^{\circ} \mathrm{C}$, inj $\mathrm{T}=220^{\circ} \mathrm{C}$, ${ }_{35} \operatorname{det} \mathrm{~T}=220^{\circ} \mathrm{C}$, 15 psi He carrier gas). $\mathrm{R}_{\mathrm{T}}$ : Acetophenone: 13.4 min. 1-Phenylethanol: 17.4 (R), 18.0 (S) min. ${ }^{1}$ The above procedure was repeated using other temperatures and concentrations.

## ${ }_{40}$ General ruthenium-hydride synthesis prior to use in

 reductions. ${ }^{12}$To Ru (TMS-TMS) ( $22.6 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) in THF ( $1 \mathrm{~cm}^{3}$ ) was added aqueous sodium hydroxide $\left(0.5 \mathrm{~cm}^{3}, 1 \mathrm{M}, 0.50 \mathrm{mmol}\right)$ and stirred for 2.5 h . An excess of $\mathrm{H}_{3} \mathrm{PO}_{4}\left(0.3 \mathrm{~cm}^{3}\right)$ was then added 45 and the reaction extracted using $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried over $\mathrm{MgSO}_{4}$ and the solvent removed all under a nitrogen atmosphere to afford the hydride species as a yellow oil which was used immediately without further purification. Selected data for each hydride this formed is given below.

## Reduction of acetophenone using ruthenium hydride

 complexes.Method A- iPrOH: The ruthenium hydride $(0.01 \mathrm{mmol}, 0.5$ $\mathrm{mol} \%$ ) was dissolved in anhydrous $\operatorname{iPrOH}\left(10 \mathrm{~cm}^{3}\right)$ and heated at ${ }_{55} 60{ }^{\circ} \mathrm{C}$ over 30 min . Acetophenone $\left(0.22 \mathrm{~cm}^{3}, 0.2266 \mathrm{~g}, 1.89\right.$ mmol ) was then added and the reaction stirred at $60^{\circ} \mathrm{C}$ over 7 days and the reaction was monitored by GC.

Method $B-\mathrm{HCOOH} / \mathrm{Et}_{3} \mathrm{~N}$ : The ruthenium hydride $(0.02 \mathrm{mmol}$, $0.25 \mathrm{~mol} \%$ ) was dissolved in formic acid triethylamine complex $60\left(5: 2,4 \mathrm{~cm}^{3}\right)$ and heated at $60{ }^{\circ} \mathrm{C}$ over 30 min . Acetophenone $\left(0.92 \mathrm{~cm}^{3}, 0.9476 \mathrm{~g}, 7.90 \mathrm{mmol}\right)$ was then added and the reaction stirred at $60^{\circ} \mathrm{C}$ over 7 days and the reaction was monitored by GC.

65 Acknowledgement: We thank EPSRC for financial support of JEDM and JPH (EP/F019424) and TCJ (Supergen XIV Hdelivery EP/G01244X/1). JG was an MChem project student supported by Warwick University.

## Notes and references

$70{ }^{\text {a }}$ Department of Chemistry, The University of Warwick, Coventry, CV4 7AL UK. Fax: (+44) 247652 3260; Tel: (+44) 247652 4112; E-mail: m.wills@warwick.ac.uk.
$\dagger$ Electronic Supplementary Information (ESI) available: [experimental details, NMR spectra]. See DOI: 10.1039/b0000000x/

1) (a) B. L. Conley, M. K. Pennington-Boggio, E. Boz and T. J. Williams, Chem. Rev. 2010, 110, 2294-2312. (b) Y. Blum, Y. Shvo, J. Organomet. Chem. 1985, 282, C7-C10. (c) Y. Shvo, D. Czarkie and Y. Rahamim, J. Am. Chem. Soc. 1986, 108, 7400-7402..
80 2) (a) O. Pàmies and J.-E. Bäckvall, Chem. Rev., 2003, 103, 3247-3262. (b) B. A. Persson, A. I. E. Larsson, M. Le Ray, J.-E. Bäckvall, J. Am. Chem. Soc. 1999, 121, 1645-1650. (c) O. Pamies, J.-E. Bäckvall, J. Org. Chem. 2001, 66, 4022-4025.
2) (a) L. K. Thalén, D. Zhao, J.-B. Sortais, J. Paetzold, C. Hoben, J.-E. Bäckwall, Angew. Chem. Int. Edn. 2009, 15, 3403-3410. (b) J. S. M. Samec, J.-E. Bäckvall, Chem. Eur. J. 2002, 8, 2955-2961. (c) J. Paetzold, J.-E. Bäckwall, J. Am. Chem. Soc. 2005, 127, 17620-17621.
3) (a) J. S. M. Samec, J.-E. Bäckvall, P. G. Andersson and P. Brandt, Chem. Soc. Rev. 2006, 35, 237-248. (b) S. E. Clapham, A Hadzovic
90 and R. H. Morris, Coord. Chem. Rev. 2004, 248, 2201-2237. (c) C. P. Casey, S. W. Singer, D. R. Powell, R. K. Hayashi, M. Kavana, J. Am. Chem. Soc. 2001, 123, 1090-1100. (d) J. B. Johnson, J.-E. Bäckvall, J. Org. Chem. 2003, 68, 7681-7684. (e) Comas-Vives, G. Ujaque, A. Lledós, Organometallics, 2007, 26, 4135-4144. (f) C. P. Casey, S. E.
95 Beetner, J. B. Johnson, J. Am. Chem. Soc. 2008, 130, 2285-2295.
4) (a) M. Yamakawa, I. Yamada, R. Noyori, Angew. Chem., Int. Ed. 2001, 40, 2818-2821. (b) C. P. Casey, J. B. Johnson, J. Org. Chem. 2003, 68, 1998-2001. (c) S. Hashiguchi, A. Fujii, K. J. Haack, K. Matsumura, T. Ikariya and R. Noyori, Angew. Chem. Int. Edn. 1997, 36, 288-290. (d) F. K. Cheung, C. Lin, F. Minissi, A. Lorente Crivillé, M. A. Graham, D. J. Fox, M. Wills, Org. Lett. 2007, 9, 4659-4662. (e) A. M. Hayes, D. J. Morris, G. J. Clarkson, M. Wills, J. Am. Chem. Soc. 2005, 127, 7318-7319.
5) C. P. Casey, T. E. Vos, S. W. Singer, H. A. Guzel, J. Org. Chem. 105 2002, 21, 5038-5046.
6) (a) H.-J. Knölker, E. Baum, H. Goesmann and R. Klauss, Angew. Chem. Int. Edn. 1999, 38, 2064-2066. (b) H. H. Zhang, D. Z. Chen, Y. H. Zhang, G. Q. Zhang and J. B. Liu, Dalton Transactions 2010, 39, 1972-1978. (c) G. N. Schrauzer, J. Am. Chem. Soc. 1959, 81, 110 5307-5310.
7) (a) C. P. Casey and H. Guan, J. Am. Chem. Soc. 2007, 129, 58165817. (b) C. P. Casey and H. Guan, J. Am. Chem. Soc. 2009, 131, 2499-2507. (c) H. Zhang, D. Chen, Y. Zhang, G. Zhang and J. Liu, Dalton Trans. 2010, 39, 1972-1978
115 9) (a) M. G. Coleman, A. N. Brown, B. A. Bolton and H. Guan, Adv. Synth. Catal. 2010, 352, 967-970. (b) S. A. Moyer and T. W. Funk, Tetrahedron Lett. 2010, 51, 5430-5433. (c) M. K. Thorson, K. L. Klinkel, J. Wang and T. J. Williams, Eur. J. Inorg. Chem. 2009, 295302.

120 10) T. C. Johnson, G. J. Clarkson and M. Wills, Organometallics 2011, 30, 1859-1868.
11) (a) A. J. Pearson and R. J. Shively Jr., Organometallics, 1992, 11, 4096-4104. (b) A. J. Pearson and R. J. Shively Jr., Organometallics, 1994, 13, 578-584.
12) (a) Y. Yamamoto, K. Yamashita and M. Nakamura, Organometallics 2010, 29, 1472-1478. (b) A. Berkessel, S. Reichau, A. van der Höh, N. Leconte and J.-M. Neudörfl, Organometallics 2011, 30, 38803887.
13) (a) N. A. Bailey, V. S. Jassal, R. Vefghi and C. White, J. Chem. Soc. Dalton Trans. 1987, 2815-2822. (b) J. H. Eekhof, H. Hogeveen and
10 R. M. Kellogg, Chem. Commun. 1977, 705. (c) H.-J. Knölker, E. Baum and J. Heber, Tetrahedron Lett. 1992, 36, 7647-7650.
14) (a) K. Matsumura, S. Hashiguchi, T. Ikariya and R. Noyori, J. Am. Chem. Soc. 1997, 119, 8738-8739. (b) D. J. Morris, A. M. Hayes and M. Wills, J. Org. Chem. 2006, 71, 7035-7044. (c) J. A. Marshall. P Eidam and H. S. Eidam, J. Org. Chem. 2006, 71, 4840-4844.
15) Y. Yamamoto, Y. Miyabe and K.Itoh, Eur. J. Inorg. Chem. 2004, 3651-3661.
16) O. Hamed, P. M. Henry and D. P. Becker, Tetrahedron Lett. 2010, 51, 3514-3517.
20 17) M. M. Midland, A. Tramontano, A. Kazubski, R. S. Graham, D. J. S. Tsai and D. B. Cardin, Tetrahedron 1984, 40, 1371-1380. (R)-Alpine borane is derived from ( + )- $\alpha$-pinene and gives the $(R)$-reduction product illustrated.
18) (a) G. Bauer and K. A. Kirchner, Angew. Chem. Int. Ed. 2011, 50, 5798-5800. (b) A. Naik, T. Maji and O. Reiser, Chem. Commun. 2010, 46, 4475-4477. (c) R.H. Morris, Chem. Soc. Rev. 2009, 38, 2282-2291. (d) S. Enthaler, K. Junge and M. Beller, Angew. Chem. Int. Ed. 2008, 47, 3317-3321. (e) C. Sui-Seng, F. Freutel, A. J. Lough and R. H. Morris, Angew. Chem. Int. Ed. 2008, 47, 940-943. (f) A. Mikhailine, A. J. Lough and R. H. Morris, J. Am. Chem. Soc. 2009, 131, 1394-1395. (g) N. Meyer, A. J. Lough and R. H. Morris, Chem. Eur. J. 2009, 15, 5605-5610. (h) J.-S. Chen, L.-L. Chen, Y. Xing, G. Chen, W.-Y. Shen, Z.-R. Dong, Y.-Y. Li and J.-X. Gao, Acta. Chim. Sin. (Hиахие Xиеbao) 2004, 62, 1745-1750. (i) S. Zhou, S. Fleischer,
35 K. Junge, S. Das, D. Addis and M. Beller, Angew. Chem. Int. Ed. 2010, 49, 8121-8125. (j) A. A. Mikhailine and R. H. Morris, Inorg. Chem. 2010, 49, 11039-11044. (k) P. O. Lagaditis, A. J. Lough, and R. H. Morris Inorg. Chem. 2010, 49, 10057-10066. (1) K. Junge, K. Schroder and M. Beller, Chem. Commun. 2011, 4849-4859. (m) S. Zhou, S. Fleischer, K. Junge and M. Beller, Angew. Chem. Int. Ed. 2011, 50, 5120-5124.
19) C. J. Taylor, M. Motevalli, and C. J. Richards, Organometallics, 2006, 25, 2899-2902.
20) T. Schubert, W. Hummel, M.-R. Kula and M. Müller, Eur. J. Org. 45 Chem. 2001, 4181-4187
21) L. Xu, M. R. Muller, X. Yu and B.-Q. Zhu, Synth. Commun. 2009, 39, 1611-1625.

