22 research outputs found

    The transcriptome of the invasive eel swimbladder nematode parasite Anguillicola crassus

    Get PDF
    BACKGROUND: Anguillicola crassus is an economically and ecologically important parasitic nematode of eels. The native range of A. crassus is in East Asia, where it infects Anguilla japonica, the Japanese eel. A. crassus was introduced into European eels, Anguilla anguilla, 30 years ago. The parasite is more pathogenic in its new host than in its native one, and is thought to threaten the endangered An. anguilla across its range. The molecular bases for the increased pathogenicity of the nematodes in their new hosts is not known. RESULTS: A reference transcriptome was assembled for A. crassus from Roche 454 pyrosequencing data. Raw reads (756,363 total) from nematodes from An. japonica and An. anguilla hosts were filtered for likely host contaminants and ribosomal RNAs. The remaining 353,055 reads were assembled into 11,372 contigs of a high confidence assembly (spanning 6.6 Mb) and an additional 21,153 singletons and contigs of a lower confidence assembly (spanning an additional 6.2 Mb). Roughly 55% of the high confidence assembly contigs were annotated with domain- or protein sequence similarity derived functional information. Sequences conserved only in nematodes, or unique to A. crassus were more likely to have secretory signal peptides. Thousands of high quality single nucleotide polymorphisms were identified, and coding polymorphism was correlated with differential expression between individual nematodes. Transcripts identified as being under positive selection were enriched in peptidases. Enzymes involved in energy metabolism were enriched in the set of genes differentially expressed between European and Asian A. crassus. CONCLUSIONS: The reference transcriptome of A. crassus is of high quality, and will serve as a basis for future work on the invasion biology of this important parasite. The polymorphisms identified will provide a key tool set for analysis of population structure and identification of genes likely to be involved in increased pathogenicity in European eel hosts. The identification of peptidases under positive selection is a first step in this programme

    Intermediate host patterns of acanthocephalans in the Weser river system: co-invasion vs host capture

    Get PDF
    Anthropogenic interference is a major driver of ecological change in freshwater ecosystems. Pollution and the introduction of new species not only alter macrozoobenthic community structures, but can also affect their respective parasite communities. The ecology of the Weser river system experienced a drastic decline in biodiversity over the past century due to salinization caused by the local potash industry. As a response, the amphipod Gammarus tigrinus was released into the Werra in 1957. A few decades after the introduction and subsequent spread of this North American species, its natural acanthocephalan Paratenuisentis ambiguus was recorded in the Weser in 1988, where it had captured the European eel Anguilla anguilla as a novel host. To assess the recent ecological changes in the acanthocephalan parasite community, we investigated gammarids and eel in the Weser river system. In addition to P. ambiguus, 3 Pomphorhynchus species and Polymorphus cf. minutus were discovered. The introduced G. tigrinus serves as a novel intermediate host for the acanthocephalans Pomphorhynchus tereticollis and P. cf. minutus in the tributary Werra. Pomphorhynchus laevis is persistent in the tributary Fulda in its indigenous host Gammarus pulex. Pomphorhynchus bosniacus colonized the Weser with its Ponto-Caspian intermediate host Dikerogammarus villosus. This study highlights the anthropogenically driven changes in ecology and evolution in the Weser river system. Based on morphological and phylogenetic identification, the shifts in distribution and host usage described here for the first time contribute to the puzzling taxonomy of the genus Pomphorhynchus in times of ecological globalization

    Massive encapsulation of larval Anguillicoloides crassus in the intestinal wall of Japanese eels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Within the last 25 years, after the introduction of the swimbladder nematode <it>Anguillicoloides </it>crassus from East-Asia to Europe, a body of work has aggregated on the host parasite interactions in the acquired host <it>Anguilla anguilla</it>. Despite the emerging evolutionary interest there is still a lack of knowledge about host parasite relations of <it>A. crassus </it>in its natural host <it>Anguilla japonica</it>. We examined the <it>Anguillicoloides </it>infections of wild-caught Japanese eels as well as from aquacultured specimens in Taiwan with respect to the fate of migratory L3 larvae and performed infection experiments with Japanese eels.</p> <p>Results</p> <p>Inside the intestinal wall of cultured eels, where the infective pressure was higher than among wild eels, we found large numbers of granuloma-like cysts. In a few eels these cysts contained nematodes still recognizable as L3 larvae of <it>A. crassus</it>, while in most cases the content of these capsules was degraded to amorphous matter. Occurrence of these objects was correlated with the number of encapsulated larvae in the swimbladder wall. We were able to show, that the cysts contained disintegrated L3 larvae by amplification and subsequent sequencing of large subunit ribosomal rRNA. Furthermore we identified repeated infections with high doses of larvae as prerequisites for the processes of encapsulation in infection experiments.</p> <p>Conclusion</p> <p>Under high infective pressure a large percentage of L3 larvae of <it>A. crassus </it>coming from the gut lumen are eliminated by the natural host within its intestinal tissue. It is possible to reproduce this condition in infection experiments. We provide a fast, easy and reliable PCR-based method for identification of encapsulated swimbladder parasites.</p

    The phylogenetics of Anguillicolidae (Nematoda: Anguillicolidea), swimbladder parasites of eels

    Get PDF
    BACKGROUND: Anguillicolidae Yamaguti, 1935 is a family of parasitic nematode infecting fresh-water eels of the genus Anguilla, comprising five species in the genera Anguillicola and Anguillicoloides. Anguillicoloides crassus is of particular importance, as it has recently spread from its endemic range in the Eastern Pacific to Europe and North America, where it poses a significant threat to new, naïve hosts such as the economic important eel species Anguilla anguilla and Anguilla rostrata. The Anguillicolidae are therefore all potentially invasive taxa, but the relationships of the described species remain unclear. Anguillicolidae is part of Spirurina, a diverse clade made up of only animal parasites, but placement of the family within Spirurina is based on limited data. RESULTS: We generated an extensive DNA sequence dataset from three loci (the 5' one-third of the nuclear small subunit ribosomal RNA, the D2-D3 region of the nuclear large subunit ribosomal RNA and the 5' half of the mitochondrial cytochrome c oxidase I gene) for the five species of Anguillicolidae and used this to investigate specific and generic boundaries within the family, and the relationship of Anguillicolidae to other spirurine nematodes. Neither nuclear nor mitochondrial sequences supported monophyly of Anguillicoloides. Genetic diversity within the African species Anguillicoloides papernai was suggestive of cryptic taxa, as was the finding of distinct lineages of Anguillicoloides novaezelandiae in New Zealand and Tasmania. Phylogenetic analysis of the Spirurina grouped the Anguillicolidae together with members of the Gnathostomatidae and Seuratidae. CONCLUSIONS: The Anguillicolidae is part of a complex radiation of parasitic nematodes of vertebrates with wide host diversity (chondrichthyes, teleosts, squamates and mammals), most closely related to other marine vertebrate parasites that also have complex life cycles. Molecular analyses do not support the recent division of Anguillicolidae into two genera. The described species may hide cryptic taxa, identified here by DNA taxonomy, and this DNA barcoding approach may assist in tracking species invasions. The propensity for host switching, and thus the potential for invasive behaviour, is found in A. crassus, A. novaezelandiae and A. papernai, and thus may be common to the group

    Quantifying differences in parasite numbers between samples of hosts

    Get PDF
    Abstract An important question in many parasitological studies is the assessment of differences in parasite numbers between samples of hosts. This is not always easy: while almost everybody will agree that the main task consists in deciding whether the values in one sample tend to be higher than the values of the other sample, there is considerable disagreement about what higher (or lower) should mean. In common use as dissimilarity measures are differences between mean values, medians, geometric means, prevalence rates, relative effects, and more. In general, different measures can lead to different conclusions. However, a debate as to which measure is superior is fruitless; it depends on goals and circumstances of the respective study. In our opinion, it is more important to identify situations in which most of the above mentioned measures coincide, and hence, one can confidently claim that the values in one sample are higher than in the other. This is the case when one sample is stochastically larger than the second. It is the aim of this paper to review this concept using distributional and data examples, and of proposing graphical tools for detecting stochastic dominance

    Evolutionary divergence of the swim bladder nematode Anguillicola crassus after colonization of a novel host, Anguilla anguilla

    Get PDF
    BACKGROUND: Anguillicola crassus, a swim bladder nematode naturally parasitizing the Japanese eel, was introduced about 30 years ago from East Asia into Europe where it colonized almost all populations of the European eel. We conducted a common garden experiment under a reciprocal transfer design infecting both European and Japanese eels with populations of A. crassus from Germany, Poland and Taiwan. We tested, whether differences in infectivity, developmental dynamics and reproductive output between the European and Asian parasite populations occur while harboured in the specimens of native and colonized eel host, and if these differences are genetically based or are plastic responses to the new environment. RESULTS: Under common garden conditions an evolutionary change in the both European parasite populations of A. crassus compared with their Taiwanese conspecifics was observed for infectivity and developmental dynamics, but not for reproductive output. When infecting the European eel, current European populations of the parasite were less infective and developed faster than their Taiwanese conspecifics. In the reciprocally infected Japanese eel the genetically induced differences between the parasite strains were less apparent than in the European eel but higher infectivity, faster development and higher larval mortality of the European parasite populations could be inferred. CONCLUSIONS: The differences in infectivity and developmental dynamics between European and Taiwanese populations of A. crassus found in our study suggest rapid genetic divergence of this parasite after a successful host switch in Europe

    Invasion of a South African Anguilla mossambica (Anguillidae) population by the alien gill worm Pseudodactylogyrus anguillae (Monogenea)

    No full text
    The parasitic gill monogenean Pseudodactylogyrus anguillae is alien to Africa. In an investigation of 227 longfin eel, Anguilla mossambica, and 26 mottled eel, Anguilla marmorata, sampled from four river systems in the Eastern Cape, South Africa, this parasite was only present on the gills of A. mossambica sampled from the Great Fish River system. In the Great Fish River, it infected 73.2% of the sampled population at a mean intensity of 63.8 ± 34.3 parasites per fish. High prevalence and intensity are indicative of a well-established alien invasive parasitic species. Results showing the absence of P. anguillae from the co-occurring but less abundant A. marmorata indicate that this species may be less susceptible to P. anguillae infection
    corecore