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Abstract 

An important question in many parasitological studies is the assessment of differences in 

parasite numbers between samples of hosts. This is not always easy: while almost everybody 

will agree that the main task consists in deciding whether the values in one sample tend to be 

higher than the values of the other sample, there is considerable disagreement about what 

higher (or lower) should mean. In common use as dissimilarity measures are differences 

between mean values, medians, geometric means, prevalence rates, relative effects, and more. 

In general, different measures can lead to different conclusions. However, a debate as to 

which measure is superior is fruitless; it depends on goals and circumstances of the respective 

study. In our opinion, it is more important to identify situations in which most of the above 

mentioned measures coincide, and hence, one can confidently claim that the values in one 

sample are higher than in the other. This is the case when one sample is stochastically larger 

than the second. It is the aim of this paper to review this concept using distributional and data 

examples, and of proposing graphical tools for detecting stochastic dominance.  
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1. Introduction 

In a good part of parasitological research, the quantification and comparison of 

parasite numbers in different samples, recorded at different times and/or in different habitats, 

is an important task. The most commonly used measure for this purpose is probably the 

difference between mean values, i.e. mean abundance or mean intensity. Rózsa et al. (2000) 

argue that terminological recommendations require the use of these measures. Since small 

sample sizes can lead to difficulties when using the traditional t-test or Welch’s modification, 

they propose a bootstrap test based on Welch’s statistic. They criticize the use of 

nonparametric tests such as the Mann-Whitney U-test because these tests compare other 

characteristics instead of means. Indeed, assuming we have samples mXX ,,1 K  and nYY ,,1 K  

of size m  and n , the U-test corrected for ties is based on the statistic 
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(see, e.g., Hollander and Wolfe 1999, p.118). )/( nmU ⋅  is an estimator of the relative effect 

)Pr()2/1()Pr( YXYXp =+>= . If 2/1>p , observations tend to be larger in group 1 in 

comparison to group 2 in a certain sense, but the mean of group 1 is not necessarily larger than 

the mean of group 2. The converse is true for 2/1<p . If both groups have the same 

distribution, then 2/1=p . However, the opposite does not hold: if 2/1=p , the underlying 

distributions need not be the same.  

In two recent articles, however, Neuhäuser and Poulin (2004) and Neuhäuser and 

Ruxton (2009) advocate the use of relative effect, since “means are not very useful descriptors 

for skewed distributions”, and they propose the use of the Brunner und Munzel (2000) test 

which is also based on this measure. They conclude that the relative effect would be the 

natural measure for a difference between two samples since “the main question is whether the 

values in one sample tend to be larger (or smaller) than the values of the other sample”, 
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implying that only the relative effect provides the answer to this question. A bootstrap test for 

the hypothesis 2/1=p  based on the rank Welch test statistic is proposed by Reiczigel et al. 

(2005). 

There are other measures in common use, like the comparison of medians or 

prevalence rates, and clearly, in a specific situation, the use of different measures can lead to 

different conclusions. However, in our opinion, a dispute about the ‘best’ measure is fruitless 

since this depends on goals and circumstances of the respective study. For example, if an 

infection with a certain parasite is invariably lethal, prevalence rates are adequate measures. In 

other cases, infection with a moderate number of parasites has no demonstrable negative 

effects on the host, but a very large number of parasites causes significant morbidity; in such 

cases, means which give more weight on high intensities are suitable measures. Situations 

which lie in between call for intermediate measures such as medians or relative effects. 

Unfortunately, since the impact of parasites on hosts is seldom known precisely, it is 

difficult to justify the preference for a particular measure even in specific situations. For this 

reason, it is important to identify situations in which the above mentioned measures coincide, 

and one can therefore confidently claim that the values in one sample are higher than in the 

other. To this aim, it is not sufficient to compare a special characteristic of two distributions, 

one has to compare the whole distributions. A suitable tool is to determine whether the two 

distributions are stochastically ordered. We review this concept using distributional and data 

examples, and propose graphical tools for detecting stochastic dominance. 

 

2. Stochastic dominance between discrete distributions 

The (usual) stochastic order is an established concept in probability theory and is in 

frequent use in reliability theory and econometrics. Since we are interested in comparing 

parasite numbers, we give the definition for discrete distributions: A discrete random variable 
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X  with cumulative distribution function (cdf) )Pr()( kXkFX ≤=  is said to be larger than 

another discrete random variable Y  with cdf )Pr()( kYkFY ≤=  with respect to stochastic 

order (written YX st≥ ) if 

)(1)(1 kFkF YX −≥−   for  K,2,1,0=k , 

and it is called strictly larger if ≥  can be replaced by >  for at least one k  (otherwise, the two 

distributions can be equal). We also say that X  is stochastically larger than Y , that X  

stochastically dominates Y , or that Y  is stochastically smaller than X . Obviously, an 

equivalent condition for YX st≥  is given by 0)()( ≥− kFkF XY  for all k . 

For our purpose, the most important properties of this order between random 

variables are the following: 

• If YX st≥ then the (theoretical) prevalence )1( ≥XP  of X  is larger than the 

prevalence of Y . This follows directly from the definition putting 0=k :  

)1()0(1)0(1)1( ≥=−≥−=≥ YPFFXP YX . 

• If YX st≥ then EYEX ≥ . This follows from the definition of stochastic order 

together with the representation of the population mean ( )∑ ≥
−=

0
)(1

k X kFEX . 

• If YX st≥ , then all quantiles of the distribution of X  are larger than the 

corresponding quantiles of Y . In particular, the median of X  is larger than the median 

of Y . 

• If YX st≥  then 2/1≥p  holds for the relative effect (for a proof, see Appendix I).  

Hence, if YX st≥ , the typical measures for assessing differences between samples 

all point in the same direction. Examples for discrete distributions which are stochastically 

ordered will be dealt with in  section 5. 



 

 

6

Considering the implications of stochastic order for empirical data: if we look at data 

sets, probabilities )( kXP =  are replaced by relative frequencies K,1,0,)( =kkr , and the cdf 

is replaced by the cumulative relative frequencies )()0()( krrkR ++= K  which are 

sometimes called the empirical distribution function (edf). Since the edf has all the properties 

of a cdf, the four properties mentioned above carry over immediately to the corresponding 

empirical measures. For example, if 0)()( ≥− kRkR XY  for all k , (sample) prevalence and 

sample mean of the x-sample are larger than the corresponding measures of the y-sample. 

 

2.1. Example 1: nematode larvae in Japanese eels 

The first example compares counts of larvae of swimbladder-nematodes in two 

populations of the Japanese eel (Anguilla japonica) from southwest Taiwan. Münderle et al. 

(2006) compared wild eels from the Kao-Ping river (sample 2, 168=n ) to cultured eels from 

an adjacent aquaculture farm (sample 1, 71=n ). All recorded nematodes were of species 

Anguillicoloides crassus (previously Anguillicola crassus). 

Absolute frequencies and the differences in (cumulative) relative frequencies are 

given in Table 1. Since all entries in the last row are positive, sample 1 is stochastically larger 

than sample 2. From the above discussion, we can conclude that the difference between 

prevalences, means and medians are positive and that the relative effect is larger than 1/2. The 

exact values are given in the second column of Table 2. In this example, it is fully justified to 

state that the eels from the aquaculture farm are more heavily infected than the wild eels. 
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Table 1 

Differences in (cumulative) relative frequencies for example 1 

 

 

Table 2 

Empirical measures for examples 1-4 

 Example 1 Example 2 Example 3 Example 4 

Sample sizes  71 and 168 196 and 100 40 and 20 10 and 10 

Diff. between prevalences 0.35 0.08 -0.3 - 

Diff. between means 2.85 -0.05 5.85 3 

Diff. between medians 1 0 -5 -1 

Relative effect 0.69 0.53 0.3 0.22 
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3. Graphical tools for detecting stochastic order 

From the definition, two simple graphical procedures for checking stochastic order 

between two given discrete distributions are evident. The first is a bar plot of the difference 

)()( kFkF XY −  with positive bars if X  stochastically dominates Y , and negative values if Y  

stochastically dominates X . This plot is called a probability difference plot (P-D plot) in what 

follows. Alternatively, a scatter plot of )(kFY  against )(kFX  can be drawn. If one plots the 

values of )(kFX  on the x-axis, the points are above the diagonal if X  stochastically 

dominates Y . This plot is known as probability-probability plot (P-P plot). 

A further possible diagnostic plot is a quantile-quantile plot, which is also well 

known in the graphical analysis of statistical data. However, for discrete distributions, it is less 

suitable, particularly due to the need for choosing suitable plotting positions. 

In all plots, )(kFY  and )(kFX  have to be replaced with )(kRY  and )(kRX  when 

dealing with observed data instead of probability distributions. 

The P-D plot and the P-P plot for example 1 in section 2.1 are shown in Figures 1 

and 2, respectively. As expected from the discussion in section 2.1, all values in Figure 1 are 

positive, and all points in Figure 2 are well above the diagonal. Hence, each plot shows at a 

glance the stochastic ordering between the two samples. 
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Figure 1: Probability-difference plot for the two samples in example 1 
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Figure 2: Probability-probability plot for the two samples in example 1 
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4. Further data examples 

In this section, we discuss situations in which the two samples are not stochastically 

ordered. In examples 2 and 3, swimbladder and intestinal nematodes in European eels 

(Anguilla anguilla) are considered. The last example deals with two small samples of infected 

hosts. 

 

4.1. Example 2: nematode larvae in Rhine eels 

As second example, we consider counts of larvae of swimbladder-nematodes in 

European eels from two different locations: sample 1 ( 196=n ) from the River Rhine near 

Karlsruhe, and sample 2 ( 100=n ) from the River Rhine near Sulzbach (Münderle 2005). 

Again, all recorded nematodes were A. crassus. Measures such as the difference between 

means can be found in the third column of Table 2. 

The P-D plot (Fig. 3) and the P-P plot (Fig. 4) show that the two samples are not 

stochastically ordered. Since the bars in Figure 3 are rather short (i.e. the differences 

)()( kRkR XY −  are small), we may assume that both samples come from the same 

distribution. This can be confirmed by a test of the hypotheses YX FF =  against the alternative 

YX FF ≠ . A suitable test for this purpose is a (two-tailed) two-sample Kolmogorov-Smirnov 

test yielding a non-significant p-value of 0.8. 
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Figure 3: P–D plot for the two samples in example 2 
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Figure 4: P-P plot for the two samples in example 2 

 

4.2. Example 3: intestinal parasites in Rhine eels 

The third example compares two samples of counts of intestinal parasites in 

European eels at the same location (River Rhine near Karlsruhe), but from different years: 

sample 1 ( 40=n ) was recorded in summer 1999, sample 2 ( 20=n ) in summer 2005 

(Thielen 2006). 
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As in example 2, the P-D (Fig. 5) and P-P plots (Fig. 6) show that the two samples 

are not stochastically ordered. However, looking at the plots, it is quite obvious that the two 

samples do not stem from the same distributions. The prevalence in the second sample is 30% 

higher than in the second, and also the cumulative relative frequencies )(kR  are much higher 

in the second sample for values of k up to 10. The pattern changes for large values of k : there 

are noticeably more heavily infected eels in sample 1 than in sample 2. These findings are 

reflected in the numerical values in the fourth column of Table 2. 
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Figure 5: P-D plot for the two samples in example 3 
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Figure 6: P-P plot for the two samples in example 3 
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The reason behind this change in the distribution of intestinal parasites between 1999 

and 2005 is explained in Thielen (2006): the parasite Paratenuisentis ambiguous, which was 

predominant in 1999, vanished due to the extinction of an alternate host and was replaced by 

several other species (Pomphorhynchus laevis, Raphidascaris acus, Paraquimperia 

tenerrima, Proteocephalus macrocephalus, Bothriocephalus claviceps).  

 

4.3. Example 4: artificial dataset of Rózsa et al. (2000) 

As last data example, we consider the dataset discussed in Rózsa et al. (2000) and 

Neuhäuser and Poulin (2004). Here, 2 samples of infected hosts are considered: 

Sample A: 1, 1, 1, 1, 1, 1, 1, 1, 2, 50; 

Sample B: 1, 1, 2, 2, 2, 2, 3, 3, 4, 10. 

Even though this example deals with intensity rather than abundance, the previous 

discussion remains valid taking into account that prevalence here has no meaning, and that 

frequencies are now defined for K,2,1=k . 

Difference between means is positive; however, the difference between medians is 

negative, and the relative effect is well below 1/2 (Table 2, last column). The P-D plot (Fig. 7) 

clearly shows that neither sample A stochastically dominates sample B nor B stochastically 

dominates A. Hence, one cannot generally speak of one sample tending to larger values than 

the other; one has to be more specific: “Sample A has a larger mean intensity than sample B” 

or “median intensity is smaller in sample A”.  
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Figure 7: Probability-difference plot for the two samples in example 4 

 

5. Examples of stochastically ordered discrete probability distributions 

The opinion is widespread that stochastic ordering between probability distributions 

is uncommon. Presumably, this is due to the example of the predominant normal distribution: 

two normal distributions can only be stochastically ordered if they have equal variances (and 

then, the one with larger mean stochastically dominates the other). However, since equal 

variance is certainly the exception in practice, the same holds for stochastic ordering between 

two normal distributions. This finding is connected with the fact that the support of a normal 

distribution is unbounded in both directions.  

This changes entirely if we consider distributions defined only for positive values 

such as exponential, gamma, Weibull or count distributions. We consider the three most 

important count distributions, the Poisson, the binomial, and the negative binomial 

distributions. Particularly the last distribution is often used to model parasite numbers since 

data show a high degree of overdispersion (Anderson and Gordon 1985). As a final example, 

we consider the logarithmic distribution, which is long and widely used for modelling 

intensities (see, e.g., Williams 1964). 
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5.1. Poisson distributions 

Let X  be distributed according to a Poisson distribution with probability density 

function (pdf) K,1,0,!/)exp( =− kkk λλ , and let Y  be Poisson-distributed with pdf 

K,2,1,0,!/)exp( =− kkk µµ .Then, YX st≥ if and only if µλ ≥ , i.e. if the mean of X is 

larger or equal to the mean of Y (Appendix II). 

 

5.2. Binomial distributions 

Let X  have a binomial distribution with pdf mkpp
k

m kmk ,,0,)1( K=−






 − , and let 

Y  be binomial distributed with pdf nkqq
k

n knk ,,0,)1( K=−






 − . Then, YX st≥  if qp ≥  and 

nm ≥ , and in this case, EYEX ≥  and )()( YVarXVar ≥  (Appendix II). 

 

5.3. Negative binomial distributions 

Let X and Y have negative binomial distributions with pdf 

K,2,1,0,)1(
1

1
=−









−
−+

kpp
r

rk kr , and pdf K,2,1,0,)1(
1

1
=−









−
−+

kqq
s

sk ks , respectively. 

Then, YX st≥  if qp ≤  and sr ≥ . In this case, EYEX ≥  and )()( YVarXVar ≥  holds again 

(Appendix II). 

 

5.4. Logarithmic distributions 

Let X  have a logarithmic distribution with pdf K,3,2,1,/)]1[ln( 1 =−− − kkpp k , and 

let Y be logarithmic  distributed with pdf K,2,1,/)]1[ln( 1 =−− − kkqq k .Then, YX st≥  if and 

only if qp ≥  (Appendix II). 
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Of course, if we have stochastic ordering in one of the four examples above, not only 

are the means and variances ordered, but also medians, etc. as stated in section 2. 

If, on the other hand, the mean of X is smaller than the mean of Y but the variances 

are ordered conversely, both samples will not be stochastically ordered in general. 

As examples, we fitted negative binomial distributions to the datasets in example 1 

and 3. This distribution provides a very good model for the data under consideration (see 

Münderle et al. (2006) for the first example). 

In example 1, we obtain 08.0,28.0 == pr  for the first sample and 27.0,17.0 == qs  

for the second sample. Since sr >  and qp < , we can conclude from the result of section 5.3 

that the fitted negative binomial distribution for the first sample stochastically dominates the 

second, in agreement with the previous findings. 

In example 3, we have 01.0,23.0 == pr  and 15.0,60.1 == qs . Here, sr <  and 

qp < , and a P-D plot (Fig. 8) shows that the two fitted distributions are not stochastically 

ordered, which is again consistent with the previous results for this dataset.  
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Figure 8: P-D plot for the fitted negative binomial distribution for example 3 
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6. Conclusion 

An important task in many parasitological studies consists in deciding whether the 

values in one sample tend to be higher than the values of the other sample. However, different 

dissimilarity measures can lead to different conclusions. A debate as to which measure is 

superior is unproductive. A similar view with regard to formal tests for the relative effect is 

expressed in Neuhäuser and Ruxton (2009): “Testing the null hypothesis p=0.5 is not 

necessarily a better or worse approach than comparing central tendencies such as means or 

medians. However, it offers a different point-of-view that at least sometimes is more 

meaningful.” 

Using the concept of stochastic dominance we proposed tools which help to identify 

situations in which the most common measures all lead to the same conclusion. Only then it is 

fully justified to make a general statement that the number of parasites in one sample is larger 

than in the other sample. Several examples corroborate the applicability of the concept to 

empirical data as well as to theoretical count distributions. 
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Appendix I 

For the relative effect p , the following chain of equations hold: 
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Now assume that X  is stochastically larger than Y , i.e. )(1)(1 kFkF YX −≥−  holds for all 

k . Then 
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Hence, if YX st≥ , then the relative effect is larger or equal to 1/2. 
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Appendix II 

A discrete random variable X  (with pdf Xf ) is said to be larger than another 

discrete random variable Y  (with pdf Yf ) in likelihood ratio order (written YX lr≥ ) if 

 )1(/)1()(/)( ++≤ kfkfkfkf YXYX  for all k . 

To show that X  is stochastically larger than Y , it is sufficient to show YX lr≥  since the 

latter implies the first (see, e.g., Müller and Stoyan 2002, p. 12). 

For the Poisson distribution, it is easy to see that YX lr≥  if µλ ≥ . Thus, we also 

have YX st≥ in this case. On the other hand, if YX st≥ , then EYEX ≥ , i.e. µλ ≥ . This 

shows the statement in section 5.1. The assertions in the other examples can be obtained by 

similar reasoning. 


