20 research outputs found

    A novel hybrid aspirin-NO-releasing compound inhibits TNFalpha release from LPS-activated human monocytes and macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cytoprotective nature of nitric oxide (NO) led to development of NO-aspirins in the hope of overcoming the gastric side-effects of aspirin. However, the NO moiety gives these hybrids potential for actions further to their aspirin-mediated anti-platelet and anti-inflammatory effects. Having previously shown that novel NO-aspirin hybrids containing a furoxan NO-releasing group have potent anti-platelet effects, here we investigate their anti-inflammatory properties. Here we examine their effects upon TNFα release from lipopolysaccharide (LPS)-stimulated human monocytes and monocyte-derived macrophages and investigate a potential mechanism of action through effects on LPS-stimulated nuclear factor-kappa B (NF-κB) activation.</p> <p>Methods</p> <p>Peripheral venous blood was drawn from the antecubital fossa of human volunteers. Mononuclear cells were isolated and cultured. The resultant differentiated macrophages were treated with pharmacologically relevant concentrations of either a furoxan-aspirin (B8, B7; 10 μM), their respective furazan NO-free counterparts (B16, B15; 10 μM), aspirin (10 μM), existing nitroaspirin (NCX4016; 10 μM), an NO donor (DEA/NO; 10 μM) or dexamethasone (1 μM), in the presence and absence of LPS (10 ng/ml; 4 h). Parallel experiments were conducted on undifferentiated fresh monocytes. Supernatants were assessed by specific ELISA for TNFα release and by lactate dehydrogenase (LDH) assay for cell necrosis. To assess NF-κB activation, the effects of the compounds on the loss of cytoplasmic inhibitor of NF-κB, IκBα (assessed by western blotting) and nuclear localisation (assessed by immunofluorescence) of the p65 subunit of NF-κB were determined.</p> <p>Results</p> <p>B8 significantly reduced TNFα release from LPS-treated macrophages to 36 ± 10% of the LPS control. B8 and B16 significantly inhibited monocyte TNFα release to 28 ± 5, and 49 ± 9% of control, respectively. The B8 effect was equivalent in magnitude to that of dexamethasone, but was not shared by 10 μM DEA/NO, B7, the furazans, aspirin or NCX4016. LDH assessment revealed none of the treatments caused significant cell lysis. LPS stimulated loss of cytoplasmic IκBα and nuclear translocation of the p65 NF-κB subunit was inhibited by the active NO-furoxans.</p> <p>Conclusion</p> <p>Here we show that furoxan-aspirin, B8, significantly reduces TNFα release from both monocytes and macrophages and suggest that inhibition of NF-κB activation is a likely mechanism for the effect. This anti-inflammatory action highlights a further therapeutic potential of drugs of this class.</p

    Oxygen levels determine the ability of glucocorticoids to influence neutrophil survival in inflammatory environments

    Get PDF
    GCs are highly effective in treating a wide range of inflammatory diseases but are limited in their ability to control neutrophilic lung inflammation in conditions such as COPD. Neutrophil apoptosis, a central feature of inflammation resolution, is delayed in response to microenvironmental cues, such as hypoxia and inflammatory cytokines, present at inflamed sites. GCs delay neutrophil apoptosis in vitro, and this may therefore limit the ability of GCs to control neutrophilic inflammation. This study assesses the effect GCs have on hypoxia- and inflammatory cytokine-induced neutrophil survival. Human neutrophils were treated with GCs in the presence or absence of GM-CSF or inflammatory macrophage-CM at a range of oxygen concentrations (21–1% oxygen). Neutrophil apoptosis and survival were assessed by flow cytometry and morphological analysis and neutrophil function, by stimulus-induced shape change and respiratory burst. Dexamethasone promoted neutrophil survival at 21%, 10%, and 5% oxygen but not at 1% oxygen. Interestingly, GM-CSF and inflammatory CM increased neutrophil survival significantly, even at 1% oxygen, with cells remaining functionally active at 96 h. Dexamethasone was able to reduce the prosurvival effect of GM-CSF and inflammatory CM in a hypoxic environment. In conclusion, we found that GCs do not augment neutrophil survival in the presence of severe hypoxia or proinflammatory mediators. This suggests that GCs would not promote neutrophil survival at sites of inflammation under these conditions

    Induction of Eosinophil Apoptosis by the Cyclin-Dependent Kinase Inhibitor AT7519 Promotes the Resolution of Eosinophil-Dominant Allergic Inflammation

    Get PDF
    Eosinophils not only defend the body against parasitic infection but are also involved in pathological inflammatory allergic diseases such as asthma, allergic rhinitis and contact dermatitis. Clearance of apoptotic eosinophils by macrophages is a key process responsible for driving the resolution of eosinophilic inflammation and can be defective in allergic diseases. However, enhanced resolution of eosinophilic inflammation by deliberate induction of eosinophil apoptosis using pharmacological agents has not been previously demonstrated. Here we investigated the effect of a novel cyclin-dependent kinase inhibitor drug, AT7519, on human and mouse eosinophil apoptosis and examined whether it could enhance the resolution of a murine model of eosinophil-dominant inflammation in vivo.Eosinophils from blood of healthy donors were treated with AT7519 and apoptosis assessed morphologically and by flow-cytometric detection of annexin-V/propidium iodide staining. AT7519 induced eosinophil apoptosis in a concentration dependent manner. Therapeutic administration of AT7519 in eosinophil-dominant allergic inflammation was investigated using an established ovalbumin-sensitised mouse model of allergic pleurisy. Following ovalbumin challenge AT7519 was administered systemically at the peak of pleural inflammation and inflammatory cell infiltrate, apoptosis and evidence of macrophage phagocytosis of apoptotic eosinophils assessed at appropriate time points. Administration of AT7519 dramatically enhanced the resolution of allergic pleurisy via direct induction of eosinophil apoptosis without detriment to macrophage clearance of these cells. This enhanced resolution of inflammation was shown to be caspase-dependent as the effects of AT7519 were reduced by treatment with a broad spectrum caspase inhibitor (z-vad-fmk).Our data show that AT7519 induces human eosinophil apoptosis and enhances the resolution of a murine model of allergic pleurisy by inducing caspase-dependent eosinophil apoptosis and enhancing macrophage ingestion of apoptotic eosinophils. These findings demonstrate the utility of cyclin-dependent kinase inhibitors such as AT7519 as potential therapeutic agents for the treatment of eosinophil dominant allergic disorders

    The antimicrobial/elastase inhibitor elafin regulates lung dendritic cells and adaptive immunity

    No full text
    Infections with bacteria and viruses such as adenovirus are a feature of chronic lung diseases such as chronic obstructive pulmonary diseases (COPD), and may be instrumental in the generation of disease exacerbations. We have previously shown in acute models that elafin (a lung natural chemotactic molecule for macrophages and neutrophils, with potent antimicrobial and neutrophil elastase inhibitor activity) is upregulated in infection and modulates innate immunity. Here we present data using two independent systems of elafin overexpression in vivo (recombinant adenovirus [Ad-elafin] and an elafin transgenic mouse line) to examine the function of elafin in adaptive immunity. We show that elafin increases the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung dendritic cells in vivo. Analysis of cytokines produced by spleen and lung cells, and of antibodies measured in serum and bronchoalveolar lavage fluid, shows that the immunity induced is biased toward a type 1 response (production of IL-12, IFN-gamma, and IgG2a). Furthermore, elafin overexpression protected mice against further challenge with Ad-LacZ, as assessed by antibody levels and neutralization titer, as well as LacZ expression in lung tissue. Thus, the pleiotropic molecule elafin has significant potential in modulating antigen-presenting cell numbers and activity, and could be beneficial in mucosal protective strategies

    The CDK inhibitor, R-roscovitine, promotes eosinophil apoptosis by down-regulation of Mcl-1

    Get PDF
    AbstractEosinophils are major players in inflammatory allergic diseases such as asthma, hay fever and eczema. Here we show that the cyclin-dependent kinase inhibitor (CDKi) R-roscovitine efficiently and rapidly induces human eosinophil apoptosis using flow cytometric analysis of annexin-V/propidium iodide staining, morphological analysis by light microscopy, transmission electron microscopy and Western immunoblotting for caspase-3 cleavage. We further dissect these observations by demonstrating that eosinophils treated with R-roscovitine lose mitochondrial membrane potential and the key survival protein Mcl-1 is down-regulated. This novel finding of efficacious induction of eosinophil apoptosis by CDKi drugs has potential as a strategy for driving resolution of eosinophilic inflammation

    AT7519 drives granulocyte apoptosis as assessed by flow cytometry.

    No full text
    <p>Immunized mice were challenged with OVA and 24 h later received AT7519 or vehicle and apoptosis assessed by flow cytometry at 2, 4 and 6 h (A). (B) Typical flow cytometric profile of pleural lavage cells showing granulocytes and non-granulocyte cells gated on the basis of size and granularity. (C) Representative histograms of gated granulocytes from vehicle treated (i) and AT7519 treated (ii) animals as well as representative histograms of gated non-granulocyte cells from vehicle treated (iii) and AT7519 treated (iv) animals at 6 hours post treatment. ***P<0.001 when compared with vehicle-treated, OVA-injected mice.</p
    corecore