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The CDK inhibitor, R-roscovitine, promotes eosinophil apoptosis
by down-regulation of Mcl-1
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Eosinophils are major players in inflammatory allergic diseases such as asthma, hay fever and
eczema. Here we show that the cyclin-dependent kinase inhibitor (CDKi) R-roscovitine efficiently
and rapidly induces human eosinophil apoptosis using flow cytometric analysis of annexin-V/propi-
dium iodide staining, morphological analysis by light microscopy, transmission electron microscopy
and Western immunoblotting for caspase-3 cleavage. We further dissect these observations by dem-
onstrating that eosinophils treated with R-roscovitine lose mitochondrial membrane potential and
the key survival protein Mcl-1 is down-regulated. This novel finding of efficacious induction of
eosinophil apoptosis by CDKi drugs has potential as a strategy for driving resolution of eosinophilic
inflammation.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The eosinophil is a leukocyte of granulocyte lineage that confers
resistance to parasitic infection [1]. In some societies levels of par-
asitic infection have significantly declined and in parallel, allergic,
eosinophil-mediated, inflammatory diseases such as asthma, ecze-
ma and hay-fever have increased. In direct contrast, in those coun-
tries where parasitic infection has not declined, allergic
inflammatory diseases are not prominent. It seems as though func-
tional redundancy is not an option for eosinophils and allergic dis-
ease results from their inappropriate activation [2,3]. Eosinophils
and their products have been demonstrated within airways, in lung
parenchyma, at the site of eczematous skin lesions and in nasal
mucosa. Evidence of their armamentarium has also been detected
at sites of allergic inflammation and it has been shown that they
contribute to airway epithelial damage and remodelling in asthma
[1,4–7]. Therapeutic strategies that decrease eosinophil recruit-
chemical Societies. Published by E

cript.
ment and activation or enhance resolution of inflammation by
driving eosinophil apoptosis and clearance should ameliorate aller-
gic inflammatory disease [1,3,8].

An obvious target for the prevention of eosinophil growth, dif-
ferentiation, survival [9–11] and, also to some extent recruitment
and activation [12] is the cytokine IL-5 but initial in vivo work
has been disappointing suggesting a subordinate role or even
redundancy for eosinophils in asthma [13]. Despite this, eosino-
phils have retained their place as key pathophysiological players
in defined subsets of asthma following successful trials of anti-IL-
5 therapy [14–16]. If eosinophils can be driven towards apoptosis
and efficiently cleared by phagocytes prior to membrane rupture,
the damaging sequelae of degranulation and reactive oxygen spe-
cies leakage should be avoided, thus protecting airway tissue and
preventing detrimental remodelling [5,17]. Eosinophils undergo
classical apoptosis in response to various treatments including:
NF-jB inhibition, Fas-ligation, protein synthesis inhibition and
exposure to corticosteroids. There is some controversy over the
dominant mechanism by which eosinophils undergo apoptosis.
Eosinophils are known to possess mitochondria which are impor-
tant for apoptosis but probably not functional in terms of ATP
lsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.febslet.2009.07.017
mailto:a.g.rossi@ed.ac.uk
http://www.FEBSLetters.org


R. Duffin et al. / FEBS Letters 583 (2009) 2540–2546 2541
generation. Caspases 3, 8 and 9 are constitutively expressed and
have all been in implicated in dexamethasone driven apoptosis
[7,18–20].

The cyclin-dependent kinase inhibitor (CDKi), R-roscovitine,
was initially developed as an anti-cancer agent directed against
cell-cycle proteins, promoting cancer cell death through effects
on NF-jB, p53 and key survival proteins [21,22]. It has been shown
to promote apoptosis of myeloid cancer cells by down-regulation
of the key survival protein Mcl-1 [23]. Eosinophils are terminally
differentiated cells and as such should not require cell-cycling
machinery such as CDKs. Nonetheless, like other terminally differ-
entiated cells, including neutrophils [24,25] and neurons [26], they
have measurable expression of CDKs. Neutrophils are known to un-
dergo apoptosis in response to CDK inhibitors and indeed work
performed in our laboratory has shown that resolution of neutro-
phil-driven inflammation can be driven by this class of drugs [27].

In this paper, we are the first to show that CDK inhibition drives
eosinophil apoptosis by the mitochondrial pathway, a novel finding
with promising implications for the resolution of eosinophilic
inflammation.

2. Materials and methods

2.1. Eosinophil isolation

Granulocytes were isolated from the peripheral venous blood of
healthy adult donors (Lothian Research Ethics Committee approvals
#08/S1103/38 or #1702/95/4/72) by dextran (Pharmacosmos)
sedimentation followed by centrifugation through discontinuous
PBS-Percoll (GE Healthcare) gradients [28,29]. Eosinophils were sep-
arated from contaminating neutrophils using an immunomagnetic
separation step with sheep anti-mouse IgG-Dynabeads (Invitrogen)
coated with the murine anti-neutrophil antibody 3G8 (anti-CD16; a
giftfromDr.J.Unkeless,MountSinaiMedicalSchool,NewYork)aspre-
viously described [30]. Eosinophil purity was routinely greater than 95%.

2.2. Apoptosis assessment

Eosinophils were re-suspended in IMDM (PAA) with 10% FBS
(Biosera), penicillin (100 U/ml) and streptomycin (100 U/ml)
(PAA). Cells were aliquoted (5 � 106 cells/ml) into a 96-well-flat-
bottomed-flexible-plate (BD Biosciences) in a final volume of
150 ll. They were incubated with R-roscovitine (A.G. Scientific,
USA), Z-Val-Ala-DL-Asp(OMe)-fluoromethylketone (zVAD-fmk)
(Bachem, Switzerland) or combinations at 37 �C with 5% CO2. All
stock reagents were initially dissolved in dimethylsulphoxide
(DMSO) (Sigma) then diluted in buffer yielding a final DMSO con-
centration of 0.2%; a corresponding DMSO control of 0.2% was as-
sessed as an appropriate vehicle control. We assessed apoptosis
by flow cytometry using annexin-V-FLUOS (Roche) in combination
with propidium iodide (PI) (Sigma) on a BD FacsScan flow cytom-
eter (Becton, Dickinson and Co.). Morphological apoptotic changes
were assessed by light microscopy of DiffQuikTM (Dade Behring)
stained cytocentrifuged cells.

2.3. Mitochondrial transmembrane potential assessment

MitoCaptureTM is a fluorescence-based tool for distinguishing
between viable and apoptotic cells by detecting changes in the
mitochondrial transmembrane potential. Eosinophils were isolated
as above and incubated with appropriate reagent at a concentra-
tion of 5 � 104 ml�1 in a flat-bottomed 96-well plate at 37 �C, 5%
CO2. MitoCaptureTM kit used as per manufacturer’s instructions.
Fluorescence microscopy was performed using a Zeiss Axiovert
S100 microscope.
2.4. Western blotting

Cells were incubated in 2 ml Eppendorf tubes at a concentration
of 5 � 106 cells/ml with R-roscovitine, zVAD-fmk, MG-132 (Calbio-
chem) or combinations of these reagents for 4 h at 37 �C. Cells were
lysed using 1% IgepalCA-630 (Sigma) in TBS containing a protease
inhibitor cocktail before centrifugation (23 100�g; 4 �C; 20 min)
[24]. Protein samples (equivalent to 1.5 � 106 cells/lane) were re-
solved by SDS–PAGE (12% gel Thermo Scientific) then transferred
to PVDF membranes (Millipore). Blots were blocked with 5%
skimmed milk powder in TBS/0.1% Tween-20 (Sigma) before prob-
ing with antibodies to Mcl-1 (Santa Cruz), caspase-3 (BD Biosci-
ences), cleaved caspase-3 (Cell Signaling Technologies) and
soluble b-actin (Sigma).

2.5. Electron microscopy

Cells were incubated with R-roscovitine (20 lV) at 37 �C and 5%
CO2 for 8 h. Fixation was achieved by resuspension in 3% gluteral-
dehyde/0.1 M sodium cacodylate buffer (pH 7.4) overnight. Photo-
micrographs were taken with a Phillips CM12 transmission
electron microscope.

2.6. Statistical methods

Statistics shown are analysis of variance with post hoc testing
by Student–Newman–Keuls using InStat software and data are ex-
pressed as means ± S.E.M. unless otherwise stated.

3. Results

3.1. R-roscovitine can drive primary human eosinophil apoptosis in a
concentration- and time-dependent manner

To explore whether R-roscovitine promotes similar pro-apopto-
tic effects on human eosinophils as those previously observed with
neutrophils, cells were treated with increasing concentrations of
10, 20 and 50 lM R-roscovitine. Apoptosis was assessed at time
points as early as 4 h by flow cytometric analysis and R-roscovitine
was observed to induce apoptotic cell death in eosinophils. This
contrasts with other pro-apoptotic agents such as dexamethasone
where apoptosis is first detected at 12–24 h [30,31]. In an early,
preliminary experiment we included dexamethasone (1 lM) as a
positive control for induction of eosinophil apoptosis. We found
that R-roscovitine (30 lM) was more effective at inducing apopto-
sis as assessed by annexin-V positivity. Interestingly, a combina-
tion of the two agonists did not yield higher levels of cell death
than R-roscovitine alone. For example, after 20 h culture, control
death was 12.5 ± 0.8%; dexamethasone was 22.1 ± 2.2%; R-roscovi-
tine was 81.2 ± 1.1% and a combination of dexamethasone and R-
roscovitine was 83.9 ± 1.4% where values from duplicate samples
obtained from a single donor are expressed as the means ± S.D.
Cells were further assessed for any morphological changes by light
microscopy after cytocentrifugation and DiffQuikTM staining. The
results showed a clear increase in annexin-V/propidium iodide
staining, which occurred in a concentration- and time-dependent
manner (Figs. 1A, B and 2A). Eosinophils progress through apopto-
sis to secondary necrosis (shown by joint staining with annexin-V
and propidium iodide). This transition appears to occur more rap-
idly in eosinophils than in the other abundant granulocyte, neutro-
phils. At later time-points (up to 20 h) we see increasing levels of
apoptosis and a concomitant rise in necrosis again suggesting tran-
sition from apoptosis to secondary necrosis. Transmission electron
microscopy of R-roscovitine treated eosinophils (20 lM, 8 h) was
utilised to ultimately characterise their cellular morphology. These



Fig. 1. Ability of increasing concentrations (10, 20 and 50 lM) of R-roscovitine, to induce eosinophil cell death after 4 h treatment. (A) Flow cytometric profile of annexin-V/PI
staining showing apoptotic cells in the lower right quadrant, necrotic cells in the top right quadrant and viable cells in the bottom left quadrant. Cytocentrifuge image (400�
magnification) demonstrates cellular morphology. Black arrows indicate healthy, viable eosinophils and white arrows indicate apoptotic eosinophils. Black arrow head
indicating an erythrocyte. (B) Cumulative flow cytometric analysis of the mean percentage annexin-V�/PI� cells. There were significant differences (using analysis of variance
and post hoc Student–Newman–Keuls) between each treatment at the relevant time-point, P values displayed are *P 6 0.05, **P 6 0.01, ***P 6 0.001 and represent differences
in levels of apoptosis against the DMSO control, n = 3 independent experiments. (C) Transmission electron microscopy images of (i) a healthy non-apoptotic human
eosinophil and (ii) an apoptotic eosinophil 8 h post-R-roscovitine (20 lM) treatment. The latter cell is exhibiting characteristics typical of apoptosis, such as a condensed,
round nucleus. Magnification 9500�.
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results clearly demonstrate the presence of classical apoptotic
signs; namely the presence of chromatin condensation in the nu-
cleus and granular rearrangement, when comparing R-roscovitine
treated apoptotic eosinophils (Fig. 1C(ii)) with non-apoptotic cells
(Fig. 1C(i)).
3.2. R-roscovitine driven eosinophil apoptosis can be delayed by
caspase inhibition

Classical apoptosis is known to be a caspase-dependent phe-
nomenon [32,33]. In order to confirm our finding that eosinophils



Fig. 2. Apoptosis induced 4 h post-treatment with R-roscovitine (50 lM) was inhibited by zVAD-fmk (100 lM), indicating that the mechanism of cell death is caspase-
dependent. (A) Cumulative flow cytometric profile analysis showing the mean percentage of eosinophils in the viable (white bar), necrotic (red bar) or apoptotic (green bar)
quadrants. P values (using analysis of variance and post hoc Student–Newman–Keuls) of ***P 6 0.001 represent difference in apoptosis compared to controls and P values ���

P 6 0.001 are compared to R-roscovitine treatment, n = 4 independent experiments. (B) (i) Representative Western immunoblot image for caspase-3 of the lysates from
eosinophils treated with either R-roscovitine (50 lM) alone or a co-treatment of R-roscovitine and zVAD-fmk (100 lM) for 4 h. (ii) Representative Western immunoblot
image for cleaved caspase-3 of the lysates from eosinophils treated with either R-roscovitine (50 lM) alone or a co-treatment of R-roscovitine and zVAD-fmk (100 lM) for
4 h. Also included are the lysates of eosinophils treated with DMSO (0.2%) as a vehicle control, culture medium alone, zVAD-fmk alone and lysates of R-roscovitine-treated
human neutrophils (identical conditions) as a positive control. A b-actin blot is also included as a loading control.

R. Duffin et al. / FEBS Letters 583 (2009) 2540–2546 2543
undergo apoptosis following incubation with CDKis, we assessed
caspase involvement using two different approaches. Initially, we
co-incubated eosinophils with R-roscovitine (50 lM) and zVAD-
fmk (100 lM), the pan-caspase inhibitor and measured apoptosis,
as before, using flow cytometry following annexin-V and propidi-
um iodide staining. Co-incubation appeared to inhibit the early
induction of apoptosis. At 4 h the level of apoptosis decreased sig-
nificantly (P 6 0.001) by over 50% from 27.3 ± 2.0% to 13.1 ± 1.5%
(Fig. 2A). To further demonstrate the role of caspases in R-roscovi-
tine induced eosinophil apoptosis, we also performed Western
blotting for caspase-3 (Fig. 2B(i)) and cleaved caspase-3
(Fig. 2B(ii)) on lysates from eosinophils, 4 h post-R-roscovitine
with and without zVAD-fmk treatment. There were changes in
the levels of caspase-3 on R-roscovitine and zVAD-fmk treatment
as detected by a specific caspase-3 antibody and no evidence of
cleaved caspase-3 isoforms were detected with this antibody.
These changes correlated with our subsequent finding using a spe-
cific cleaved caspase-3 antibody. Cleaved casapase-3 was easily de-
tected in cells after R-roscovitine treatment with the use of a
specific cleaved caspase-3 antibody. However, co-treatment with
R-roscovitine and zVAD-fmk reduced caspase-3 cleavage
(Fig. 2B(ii)) thereby confirming the caspase-dependent nature of



Fig. 3. Assessment of mitochondrial membrane potential using the MitoCaptureTM assay. (A) Eosinophils cultured in media supplemented with FCS at 37 �C, 5% CO2 for 3.5 h
were assayed. The vast majority of eosinophils retain mitochondrial membrane potential (Dwm stable) as identified by orange/red fluorescence. Representative images were
taken 320�magnification. (B) Eosinophils cultured as above, however treated with R-roscovitine, 20 lM for 3.5 h. R-roscovitine treatment results in a significant increase in
the proportion of eosinophils losing mitochondrial membrane potential as identified by green fluorescence within the cytoplasm. (C) Quantification of immunofluorescence
showing the percentage cells in each mitochondrial membrane stage at both 3.5 and 24 h. P values (using analysis of variance and post hoc Student–Newman–Keuls) of
*P 6 0.05 control vs R-roscovitine 3.5 h and ***P 6 0.001, control vs R-roscovitine 24 h are displayed. n = 3 independent experiments with >500 cells counted per condition.
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R-roscovitine induced cell death. Interestingly, despite an overall
decrease in cleaved caspase-3 levels with combined R-roscovitine
and zVAD-fmk treatment there was a slight increase in the levels
of the 17 kDa cleaved caspase-3 isoform. (The visible bands at
MW 17 and 19 kDa are cleaved caspase-3 isoforms (Fig. 2B(ii),
inactive (non-cleaved) caspase-3 is evident at 32 kDa (Fig. 2B(i)).

3.3. Apoptosis promoted by CDK inhibition is mediated by loss of
mitochondrial membrane potential

In order to further investigate our finding that eosinophils under-
go apoptosis following treatment with R-roscovitine (20 lM) we as-
sessed mitochondrial membrane potential with the use of the
mitochondriaspecificdye,MitoCaptureTM.Thisdyestainsviablemito-
chondria orange/red as visualised by fluorescence microscopy, but
dissipates into the cell cytoplasm and fluoresces green with loss of
membrane potential. Loss of mitochondrial membrane potential
(Dwm)isakeyeventintheintrinsicpathwayofapoptosisandwewere
able to show that significantly more eosinophils lost mitochondrial
membranepotentialat3.5 hpost-R-roscovitinetreatmentcompared
to control (Fig. 3). At 24 h post-R-roscovitine treatment no eosino-
phils had intact mitochondria, whereas the majority of control eosin-
ophils retained mitochondrial membrane potential (Fig. 3C).
3.4. R-roscovitine down-regulates Mcl-1, a key eosinophil survival
protein

Having found that eosinophil mitochondrial membrane poten-
tial was lost following treatment with R-roscovitine, we postulated
that this might be due to the down-regulation of key survival pro-
teins. The Bcl-2 homologue, Mcl-1, has a short half-life because it
can be ubiquitinated and degraded in the proteasome. It has
previously been shown in neutrophil studies that treatment with
MG-132, a proteasome inhibitor, preserves Mcl-1 and prevents
apoptosis at early time-points [30]. At late time-points other ef-
fects such as the preservation of IjBa lead to acceleration of apop-
tosis [34]. Eosinophils co-incubated with both MG-132 (50 lM)
and R-roscovitine (50 lM) for 4 h had enhanced viability compared
to those treated with R-roscovitine alone (48.7 ± 10.7% annexin-
V�/PI� vs 29.9 ± 10.1% annexin-V�/PI� P 6 0.05, n = 5). We
demonstrated that this MG-132 survival effect correlated with
preservation of Mcl-1 protein in contrast to eosinophils incubated
with R-roscovitine alone where Mcl-1 was significantly down-reg-
ulated (Fig. 4). This contrasted with cells co-incubated with R-ros-
covitine and zVAD-fmk (100 lM) where no preservation of Mcl-1
was apparent (to be expected as zVAD-fmk inhibits caspases which
would normally function downstream of Mcl-1 down-regulation).



Fig. 4. Western immunoblotting of human eosinophil lysates for Mcl-1 (40 kDa)
demonstrating significant down-regulation following 4 h R-roscovitine (20 lM)
treatment. The proteasome inhibitor, MG-132 (50 lM) prevented R-roscovitine
mediated down-regulation of Mcl-1 whilst the caspase inhibitor, zVAD-fmk
(100 lM), did not. Loading control is a non-specific band at 20 kDa on the same gel.
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4. Discussion

We present the novel finding of rapid and efficacious induction
of human eosinophil apoptosis, in vitro, with the CDKi drug, R-ros-
covitine. This is an important finding as eosinophils play a central
role in the pathophysiology of common allergic diseases such as
asthma and hay-fever as well as uncommon diseases such as eosin-
ophilic oesophagitis, eosinophilic pneumonia and Churg-Strauss
syndrome [1,10,35]. Eosinophils are also notoriously difficult to
study for a number of reasons: their paucity in the peripheral blood
of normal, healthy volunteer blood donors, the laborious isolation
techniques required to ensure a pure population and their relative
intractability to standard molecular biological techniques such as
siRNA. Corticosteroids are known to induce significant eosinophil
apoptosis, in vitro, but it is still debatable as to whether this effect
is relevant in vivo [6,31,36–40]. Steroid drugs are extremely effec-
tive in the majority of asthmatic patients but some, at the more se-
vere end of the spectrum, are resistant and others experience
intolerable and unacceptable side-effects [41–45]. The initial dis-
appointing results with therapy attempting to neutralise IL-5 had
suggested that eosinophils were perhaps innocent bystanders in
the disease process [13]. Two recent positive trials using the same
approach with a carefully selected eosinophilic population of asth-
matic patients suggest that eosinophils are central to a sub-popu-
lation of asthmatic disease in what is increasingly recognised to be
a heterogeneous patient group [14–16,45].

We have published results indicating that neutrophil apoptosis
can be driven by CDKi drugs and that this can in turn promote res-
olution of inflammatory disease models [27]. We now show that
this same drug-class can promote eosinophil apoptosis and we dis-
sect the molecular mechanism by which this occurs. The mecha-
nisms by which apoptosis occur in eosinophils remain
controversial but it seems likely that the general paradigm of
extrinsic (death-receptor mediated) and intrinsic (mitochondria
mediated) pathways is applicable [18,19,46,47]. We have shown
that eosinophils undergo apoptosis at early time-points (4 h) fol-
lowing treatment with CDKi and that this is preceded by loss of
the key survival protein Mcl-1. Mcl-1 is now generally accepted
to be the pre-eminent Bcl-2 homologue responsible for neutrophil
survival and evidence is increasing for a central role in eosinophil
survival. This evidence includes the granulopenic phenotype of
the Mcl 1�/� mouse [48] and the finding that dexamethasone (a
prototype corticosteroid) driven eosinophil apoptosis is associated
with down-regulation of Mcl-1 at the protein level [39]. These
pro-survival Bcl-2 homologues are short-lived compared to their
pro-apoptotic counterparts, a feature which presumably biases
granulocyte cells towards early, constitutive apoptosis. This is
not the case in other cell types as, for example, the eponymous
Bcl-2 protein has a much longer half-life and therefore might be
expected to protect cells from short-lived interruptions to survival
protein production [49]. This may explain why we see little effect
of CDK inhibition on macrophage survival, a finding that protects
our paradigm of therapeutic, selective apoptosis induction fol-
lowed by efficient phagocytic clearance.

In keeping with our results suggesting down-regulation of sur-
vival proteins, we also show an early (3.5 h) loss of mitochondrial
membrane potential. This immediately precedes significant cas-
pase-3 cleavage and supports our contention that we are inducing
classical apoptosis mediated via the mitochondrial pathway as op-
posed to direct activation of the death-receptor pathway. We fur-
ther support our data regarding caspase involvement, using the
pan caspase inhibitor, zVAD-fmk at a concentration of 100 lM.
This drug has been used over a concentration range of 10–
300 lM in the literature and often at 100 lM in granulocyte work
[47,48]. At 300 lM in combination with TNF accelerated apoptosis
has been observed [49]. It is our experience working with primary
human granulocytes that conventional low-dose zVAD-fmk is rap-
idly degraded by these cells. The capacity of granulocytes for
zVAD-fmk degradation over short time-periods can lead to the
erroneous conclusion that apoptosis, especially constitutive apop-
tosis, is caspase independent. Therefore, by necessity, we are
forced to use higher concentrations than those routinely used by
researchers working with other cell types. We are aware that
non-specific effects on calpains have been described with caspase
inhibitors but we feel that this pharmacological observation, to-
gether with the Western blotting analysis of caspase cleavage,
strongly indicate that CDK inhibitor-induced apoptosis is indeed
caspase-dependent. We have further demonstrated that the induc-
tion of apoptosis mediated by CDK inhibition is more powerful
than that observed with dexamethasone. We are inclined to be-
lieve, given the data presented, that CDK inhibition mediates a
more effective down-regulation of survival proteins. As CDK inhibi-
tion will promote neutrophil apoptosis in tandem with eosinophil
apoptosis there is a risk of inducing neutropenia. There is evidence
to suggest that activated neutrophils are preferentially targeted by
CDKi (which may confer additional benefit in some asthma pa-
tients) but a strategy involving dual therapy with antibiotics might
also be envisaged. The potential of this approach has been demon-
strated in a recent paper by Koedel et al. [50] where combined
CDKi and ceftriaxone therapy is used to resolve an experimental
model of bacterial meningitis. Our novel finding, that CDKi drugs
drive eosinophil apoptosis suggests that this approach may prove
an effective resolution strategy for eosinophilic inflammation.
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