19 research outputs found

    Duration and nature of the end-Cryogenian (Marinoan) glaciation

    Get PDF
    The end-Cryogenian glaciation (Marinoan) is portrayed commonly as the archetype of snowball Earth, yet its duration and character remain uncertain. Here we report U-Pb zircon ages for two ash beds from widely separated localities of the Marinoan-equivalent Ghaub Formation in Namibia: 639.29 ± 0.26 Ma and 635.21 ± 0.59 Ma. These findings verify, for the first time, the key prediction of the snowball Earth hypothesis for the Marinoan glaciation, i.e., longevity, with a duration of ≥4 m.y. They also show that the nonglacial interlude of Cryogenian time spanned 20 m.y. or less and that glacigenic erosion and sedimentation, and at least intermittent open-water conditions, occurred 4 m.y. prior to termination of the Marinoan glaciation

    Tectonic and Crustal Processes Drive Multi-Million Year Arc Magma Evolution Leading up to Porphyry Copper Deposit Formation in Central Chile

    Get PDF
    Subduction zone magmatism is a major control of volcanism, the generation of modern continental crust and the formation of economically important porphyry Cu–(Mo–Au) deposits. Reading the magmatic record of individual arc segments and constraining the rates of magmatic changes are critical in order to fully understand and quantify the processes that drive magma evolution in subduction settings during arc growth. This study focuses on the San Francisco Batholith and the Rio Blanco-Los Bronces porphyry deposit cluster in central Chile, which provides an igneous rock record over ~13.5 Myr of arc evolution. We use whole-rock geochemistry, zircon geochronology and Hf isotope geochemistry to track changes in the crustal magmatic system of this arc segment during crustal thickening and porphyry Cu deposit formation. By combining the analytical dataset with Monte Carlo fractional crystallisation and assimilation fractional crystallisation modelling, we test a model for significant crustal involvement during magma evolution. Systematic and continuous increases in Dy/Yb, La/Yb, V/Sc and Sr/Y in the magmas over time indicate a transition in the main fractionation assemblage from plagioclase-dominated to amphibole-dominated that reflects deeper crystallisation and/or a higher meltwater content. Concomitant decreases in εHf and Th/La as well as increasing Ba/Th are best explained by assimilation of progressively deeper crustal lithologies from low (Chilenia) to high Ba/Th (Cuyania) basement terranes. Our study highlights that an increasingly hydrous magma and a deepening locus of crustal magma differentiation and assimilation, driven by crustal thickening contemporaneous with increased tectonic convergence and ingression of the aseismic Juan Fernandez ridge, can account for all investigated aspects of the multi-Myr magmatic evolution leading up to the formation of the Rio Blanco-Los Bronces porphyry Cu deposits. Our findings corroborate the importance of high-pressure differentiation of hydrous magma for the formation of Andean-style porphyry deposits. Once magmas favourable for porphyry Cu mineralisation were generated in the lower crust, multiple episodes of efficient magma migration into the upper crust fed several, discrete, shallow magmatic-hydrothermal systems over ~3.5 Myr to form the world’s largest known Cu resource at Rio Blanco-Los Bronces

    Revisiting the discrimination and distribution of S-type granites from zircon trace element composition

    Get PDF
    Trace element compositions of zircon can be used to estimate the chemistry of their host magmas; as such they provide a useful tool in zircon provenance, and in the assessment of changing magma chemistries in time and space. Granites derived from the melting of sedimentary protoliths (S-types) have previously been discriminated by their P contents and P vs. REE+Y correlations, largely based on data from the Lachlan Fold Belt. Using a range of magmatic suites from different locations, we show that this discrimination commonly fails to discriminate S-type granite from others. We propose an alternative discrimination tool, based on a plot of Ce/U vs. Th/U, which makes use of low LREE/U and Th/U in metapelite-derived melts. Through coupled thermodynamic and accessory mineral saturation modelling, we demonstrate that these low ratios can be explained by monazite co-crystallisation. We demonstrate that Himalayan S-types, which are inferred to have formed from partial melting of metapelite, and thus can be classified as pure S-types, exhibit the lowest Ce/U and Th/U ratios, and overlap those of metapelitic zircon. Granites formed in oceanic arcs (I-types) and mantle-derived suites both have the highest Ce/U and Th/U ratios. Other S-types, such as those known to have mixed sedimentary and igneous protoliths, which we term Hybrid S-types, form a field overlapping pure I- and S-types. We use Ce/U versus Th/U to demonstrate the dominant I-type origin to early Earth (>3.6 Ga) zircon, and using a large detrital zircon database we assess the proportion of S-type zircon through Earth history. In contrast to previous findings, we find that the supercontinent Rodinia had a normal abundance of S-type zircon, as with other supercontinents, and that instead the period 1.7–1.2 Ga exhibits a marked low in S-type zircon, corresponding to fewer continental collisions

    Discovery of two new super-eruptions from the Yellowstone hotspot track (USA): is the Yellowstone hotspot waning?

    Get PDF
    Super-eruptions are amongst the most extreme events to affect Earth’s surface, but too few examples are known to assess their global role in crustal processes and environmental impact. We demonstrate a robust approach to recognize them at one of the best-preserved intraplate large igneous provinces, leading to the discovery of two new super-eruptions. Each generated huge and unusually hot pyroclastic density currents that sterilized extensive tracts of Idaho and Nevada in the United States. The ca. 8.99 Ma McMullen Creek eruption was magnitude 8.6, larger than the last two major eruptions at Yellowstone (Wyoming). Its volume exceeds 1700 km3, covering ≥12,000 km2. The ca. 8.72 Ma Grey’s Landing eruption was even larger, at magnitude of 8.8 and volume of ≥2800 km3. It covers ≥23,000 km2 and is the largest and hottest documented eruption from the Yellowstone hotspot. The discoveries show the effectiveness of distinguishing and tracing vast deposit sheets by combining trace-element chemistry and mineral compositions with field and paleomagnetic characterization. This approach should lead to more discoveries and size estimates, here and at other provinces. It has increased the number of known super-eruptions from the Yellowstone hotspot, shows that the temporal framework of the magmatic province needs revision, and suggests that the hotspot may be waning

    Crystal mush dykes as conduits for mineralising fluids in the Yerington porphyry copper district, Nevada

    Get PDF
    Porphyry-type deposits are the world’s main source of copper and molybdenum and provide a large proportion of gold and other metals. However, the mechanism by which mineralising fluids are extracted from source magmas and transported upwards into the ore-forming environment is not clearly understood. Here we use field, micro-textural and geochemical techniques to investigate field relationships and samples from a circa 8 km deep cross-section through the archetypal Yerington porphyry district, Nevada. We identify an interconnected network of relatively low-temperature hydrothermal quartz that is connected to mineralised miarolitic cavities within aplite dykes. We propose that porphyry-deposit-forming fluids migrated from evolved, more water-rich internal regions of the underlying Luhr Hill granite via these aplite dykes which contained a permeable magmatic crystal mush of feldspar and quartz. The textures we describe provide petrographic evidence for the transport of fluids through crystal mush dykes. We suggest that this process should be considered in future models for the formation of porphyry- and similar-type deposits

    Violation of local realism with freedom of choice

    Get PDF
    Bell's theorem shows that local realistic theories place strong restrictions on observable correlations between different systems, giving rise to Bell's inequality which can be violated in experiments using entangled quantum states. Bell's theorem is based on the assumptions of realism, locality, and the freedom to choose between measurement settings. In experimental tests, "loopholes" arise which allow observed violations to still be explained by local realistic theories. Violating Bell's inequality while simultaneously closing all such loopholes is one of the most significant still open challenges in fundamental physics today. In this paper, we present an experiment that violates Bell's inequality while simultaneously closing the locality loophole and addressing the freedom-of-choice loophole, also closing the latter within a reasonable set of assumptions. We also explain that the locality and freedom-of-choice loopholes can be closed only within non-determinism, i.e. in the context of stochastic local realism.Comment: 12 pages, 3 figures, 2 tables, published online before print: http://www.pnas.org/content/early/2010/10/29/1002780107.abstrac

    Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga

    Get PDF
    Most known porphyry Cu deposits formed in the Phanerozoic and are exclusively associated with moderately oxidized, sulfur-rich, hydrous arc-related magmas derived from partial melting of the asthenospheric mantle metasomatized by slab-derived fluids. Yet, whether similar metallogenic processes also operated in the Precambrian remains obscure. Here we address the issue by investigating the origin, fO2, and S contents of calc-alkaline plutonic rocks associated with the Haib porphyry Cu deposit in the Paleoproterozoic Richtersveld Magmatic Arc (southern Namibia), an interpreted mature island-arc setting. We show that the ca. 1886–1881 Ma ore-forming magmas, originated from a mantle-dominated source with minor crustal contributions, were relatively oxidized (1‒2 log units above the fayalite-magnetite-quartz redox buffer) and sulfur-rich. These results indicate that moderately oxidized, sulfur-rich arc magma associated with porphyry Cu mineralization already existed in the late Paleoproterozoic, probably as a result of recycling of sulfate-rich seawater or sediments from the subducted oceanic lithosphere at that time

    Age and geochemistry of the Charlestown Group, Ireland:Implications for the Grampian orogeny, its mineral potential and the Ordovician timescale

    Get PDF
    Accurately reconstructing the growth of continental margins during episodes of ocean closure has important implications for understanding the formation, preservation and location of mineral deposits in ancient orogens. The Charlestown Group of county Mayo, Ireland, forms an important yet understudied link in the Caledonian-Appalachian orogenic belt located between the well documented sectors of western Ireland and Northern Ireland. We have reassessed its role in the Ordovician Grampian orogeny, based on new fieldwork, high-resolution airborne geophysics, graptolite biostratigraphy, U–Pb zircon dating, whole rock geochemistry, and an examination of historic drillcore from across the volcanic inlier. The Charlestown Group can be divided into three formations: Horan, Carracastle, and Tawnyinah. The Horan Formation comprises a mixed sequence of tholeiitic to calc-alkaline basalt, crystal tuff and sedimentary rocks (e.g. black shale, chert), forming within an evolving peri-Laurentian affinity island arc. The presence of graptolites Pseudisograptus of the manubriatus group and the discovery of Exigraptus uniformis and Skiagraptus gnomonicus favour a latest Dapingian (i.e. Yapeenian Ya 2/late Arenig) age for the Horan Formation (equivalent to c. 471.2–470.5 Ma according to the timescale of Sadler et al., 2009). Together with three new U–Pb zircon ages of 471.95–470.82 Ma from enclosing felsic tuffs and volcanic breccias, this fauna provides an important new constraint for calibrating the Middle Ordovician timescale. Overlying deposits of the Carracastle and Tawnyinah formations are dominated by LILE- and LREE-enriched calc-alkaline andesitic tuffs and flows, coarse volcanic breccias and quartz-feldspar porphyritic intrusive rocks, overlain by more silicic tuffs and volcanic breccias with rare occurrences of sedimentary rocks. The relatively young age for the Charlestown Group in the Grampian orogeny, coupled with high Th/Yb and zircon inheritance (c. 2.7 Ga) in intrusive rocks indicate that the arc was founded upon continental crust (either composite Laurentian margin or microcontinental block). Regional correlation is best fitted to an association with the post-subduction flip volcanic/intrusive rocks of the Irish Caledonides, specifically the late-stage development of the Tyrone Igneous Complex, intrusive rocks of Connemara (western Ireland) and the Slishwood Division (Co. Sligo). Examination of breccia textures and mineralization across the volcanic inlier questions the previous porphyry hypothesis for the genesis of the Charlestown Cu deposit, which are more consistent with a volcanogenic massive sulfide (VMS) deposit.</p

    Quantum Cryptography

    Get PDF
    Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.Comment: 55 pages, 32 figures; to appear in Reviews of Modern Physic
    corecore