1 Supplementary File: Duration and nature of the end-Cryogenian (Marinoan) glaciation

¹Anthony R. Prave, ²Daniel J. Condon, ³Karl Heinz Hoffmann, ²Simon Tapster, and ⁴Anthony E.
 Fallick

4

¹Department of Earth and Environmental Science, University of St Andrews, St Andrews, KY16
 9AL, United Kingdom

- 7 ²NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham, NG12 5GG,
- 8 United Kingdom
- 9 ³Geological Survey of Namibia, 1 Aviation Road, Windhoek, Namibia
- ⁴Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, United Kingdom
- 11

12 U-Pb geochronology

13 U-Pb dates were obtained by the chemical abrasion isotope dilution thermal ionisation mass

- 14 spectrometry (CA-ID-TIMS) method on selected single zircon grains (Tables 1 and 2), extracted
- 15 from an aliquot of Sample DW-1 and NAV-00-2B. Sample DW-1 is located at 15.14693E
- 16 20.20940S; Sample NAV-00-2B was reported in Hoffmann et al. (2004).
- 17

18 Zircon grains were isolated from the rock sample using standard magnetic and density separation

- 19 techniques, annealed in a muffle furnace at 900°C for 60 hours in guartz beakers. Zircon crystals,
- 20 selected for analyses based on external morphology, were transferred to 3 ml Teflon PFA beakers,
- 21 washed in dilute HNO₃ and water, and loaded into 300 µl Teflon PFA microcapsules. Fifteen
- 22 microcapsules were placed in a large-capacity Parr vessel, and the crystals partially dissolved in 120

23 μl of 29 M HF for 12 hours at 180°C. The contents of each microcapsule were returned to 3 ml

24 Teflon PFA beakers, the HF removed and the residual grains immersed in 3.5 M HNO3,

25 ultrasonically cleaned for an hour, and fluxed on a hotplate at 80°C for an hour. The HNO₃ was

- 26 removed and the grains were rinsed twice in ultrapure H₂O before being reloaded into the same 300
- 27 µl Teflon PFA microcapsules (rinsed and fluxed in 6 M HCl during crystal sonication and washing)
- and spiked with the EARTHTIME mixed $^{233}U-^{235}U-^{205}Pb-^{202}Pb$ tracer solution (ET2535). These
- 29 chemically abraded grains were dissolved in Parr vessels in 120 µl of 29 M HF with a trace of 3.5
- 30 M HNO₃ at 220°C for 60 hours, dried to fluorides, and then re-dissolved in 6 M HCl at 180°C
- 31 overnight. U and Pb were separated from the zircon matrix using an HCl-based anion exchange
- 32 chromatographic procedure¹ eluted together and dried with 2 μ l of 0.05N H₃PO₄.
- 33

34 Pb and U were loaded on a single outgassed Re filament in 5 μ l of a silica-gel/phosphoric acid

35 mixture², and U and Pb isotopic measurements made on a Thermo Triton multi-collector thermal

- 36 ionisation mass spectrometer equipped with an ion-counting SEM detector. Pb isotopes were
- 37 measured by peak-jumping all isotopes on the SEM detector for 100 to 150 cycles. Pb mass
- fractionation was externally corrected using a mass bias factor of $0.14 \pm 0.03\%$ /a.m.u. determined

- via measurements of ²⁰²Pb/²⁰⁵Pb (ET2535)-spiked samples analysed during the same experimental 39 period. Transitory isobaric interferences due to high-molecular weight organics, particularly on 40 ²⁰⁴Pb and ²⁰⁷Pb, disappeared within approximately 30 cycles, and ionisation efficiency averaged 10⁴ 41 cps/pg of each Pb isotope. Linearity (to $\ge 1.4 \times 10^6$ cps) and the associated deadtime correction of 42 43 the SEM detector were monitored by repeated analyses of NBS982, and have been constant since installation in 2006. Uranium was analysed as UO_2 + ions in static Faraday mode on 10^{12} ohm 44 resistors for 150 to 200 cycles, and corrected for isobaric interference of ²³³U¹⁸O¹⁶O on ²³⁵U¹⁶O¹⁶O 45 with an ¹⁸O/¹⁶O of 0.00206. Ionisation efficiency averaged 20 mV/ng of each U isotope. U mass 46 fractionation was corrected using the known $^{233}U/^{235}U$ ratio of the ET2535 tracer solution. 47
- 48

49 Data reduction was done using the open-source ET Redux system^{3,4} using the algorithms of

McLean et al.⁴, ET2535 tracer solution^{5,6} and U decay constants recommended by Jaffey et al.⁷. A 50 value of 138.818 ± 0.045 was used for the $^{238}U/^{235}U_{zircon}$ based upon the work of ⁸ whereas a value 51 of 137.88 was used in the prior study²⁰ study. ²⁰⁶Pb/²³⁸U ratios and dates were corrected for initial 52 ²³⁰Th disequilibrium using a Th/U[magma] = 3 ± 1 resulting in an increase in the ²⁰⁶Pb/²³⁸U dates of 53 ~ 0.09 Myr (no Th correction was made for date presented in Hoffmann et al.⁹. All common Pb in 54 55 analyses was attributed to laboratory blank and subtracted based on the measured laboratory Pb 56 isotopic composition and associated uncertainty. U blanks were estimated at 0.1 pg, based upon 57 replicate total procedural blanks.

58

59 In this manuscript the date uncertainties reporting is as A/B/C and reflect the following sources: (A) analytical, (B) analytical + tracer solution and (C) analytical + tracer solution + decay constants. 60 The A uncertainty is the internal error based on analytical uncertainties only, including counting 61 62 statistics, subtraction of tracer solution, and blank and initial common Pb subtraction. It is given at the 2σ confidence interval. This error should be considered when comparing our date with 63 ²⁰⁶Pb/²³⁸U dates from other laboratories that used the same EARTHTIME tracer solution or a tracer 64 solution that was cross-calibrated using related gravimetric reference materials. The B uncertainty 65 66 includes uncertainty in the tracer calibration and should be used when comparing our dates with those derived from laboratories that did not use the same EARTHTIME tracer solution or a tracer 67 68 solution that was cross-calibrated using relatable gravimetric reference material^{9,10}. The C uncertainty includes A and B in addition to uncertainty in the ²³⁸U decay constant⁷. This uncertainty 69 70 level should be used when comparing our dates with those derived from other decay schemes (e.g. ⁴⁰Ar/³⁹Ar, ¹⁸⁷Re-¹⁸⁷Os). 71

72

73 Ten zircon U-Pb dates were obtained and are presented in Supplementary Table 1 (and Figure 6A of the main paper). All dates are concordant and yield a weighted mean 207 Pb/ 206 Pb date of 639.1 ± 74 1.7/1.8/5.0 Ma (MSWD = 0.38, n = 10). The U-Pb data for this same sample dataset is not so 75 76 simple and does not form a coherent population and yield an MSWD that indicates excess scatter. 77 One fraction (z16) is distinctly younger than the main cluster (see Fig. 6A main paper) and is considered to reflect residual Pb-loss. The remaining nine data points yield a weighted mean 78 206 Pb/ 238 U date of 639.59±0.42 Ma (internal uncertainties only 95% conf., MSWD = 6.4), but with 79 an MSWD value that still indicates excess scatter. Evaluation of this dataset shows a strong 80 clustering around 639.5 Ma and yield a weighted mean 206 Pb/ 238 U date of 639.29 ± 0.26/0.31/0.75 81 Ma (95% conf. MSWD = 2.6). We consider this to be the best approximation of the zircon 82 83 population within sample DW-1 that best represents the timing of eruption, and hence the age for the stratigraphic level at which DW-1 was sampled within the Ghaub Formation.

- 84
- 85

Fifteen zircon U-Pb dates are presented in Table 1 and are presented graphically in Figure 6A of the 86 main paper. A coherent set of 207 Pb/ 206 Pb dates yield a weighted mean 207 Pb/ 206 Pb date of 634.8 ± 87 1.5/1.7/4.9 Ma (MSWD = 0.96, n = 15). The U-Pb data for this same sample dataset is also not so 88 89 simple and does not form a coherent population. One fraction (z12) is normally discordant with a 90 younger U-Pb age indicating Pb-loss and is disregarded from further discussion. The remaining fractions have ${}^{238}\text{U}/{}^{206}\text{Pb}$ dates that do not overlap and there is no correlation with ${}^{207}\text{Pb}/{}^{238}\text{U}$ dates 91 such that the data form a short linear array that plots across the concordia band (defined by the 235 U 92 and ²³⁸U decay constants uncertainties⁷), with two values reversely discordant. Based upon 93 94 analyses of chemically abraded zircon data we would expect closed system zircon to plot towards the lower limits of the concordia uncertainty band^{11,12}. However, in this data set, analyses plot from 95 this region towards and across the upper uncertainty bound (see Fig. 6A in the main paper). Based 96 upon long-term reproducibility of U-Pb data from the NIGL ID-TIMS laboratory, and coherent U-97 98 Pb data obtained for a high proportion of samples analysed, we suggest this variation is real and not 99 an artefact of mass spectrometry and that this reflects real U/Pb variation in the analysed sample (which has been annealed and leached). One option is that the older U-Pb dates reflecting analyses 100 of pre-eruptive zircon, and the apparent lack of corresponding variation in the ²⁰⁷Pb/²⁰⁶Pb dates is 101 due to being obscured by their larger uncertainties. An alternative is that the analyses with older 102 ²³⁸U/²⁰⁶Pb dates are from a single concordant age population and that these older dates reflect un-103 104 supported radiogenic Pb. Whilst this is unlikely to occur at a bulk level (i.e., single crystal) it is 105 possible that in zircons with fine scale U zonation redistribution of radiogenic Pb occurs at the submicron level^{13,14}, which is then enhanced by the thermal annealing and chemical leaching process¹⁵. 106

107 This possibility requires further investigation.

- 109 Either of these scenarios for explaining the scatter in the NAV-00-2B U-Pb require an interpretive 110 framework where the younger dates are considered to most closely reflect the age of the erupted 111 zircons and inferentially the age of the ash layer. This in turn requires the subjective selection of a date from which to derive an interpreted age for the sample. In Figure 1 we show a number of 112 viable interpretations for this sample, selecting different sub-populations from the cluster of 113 youngest dates. Our preferred interpreted date is Interpretation B, a weighted mean ²⁰⁶Pb/²³⁸U date 114 based upon the youngest five dates: $635.21 \pm 0.59/0.61/0.92$ Ma (95% conf. MSWD = 3.4). We 115 116 consider this to be the best approximation of the zircon population within sample NAV-00-2B that 117 best represents the timing of eruption, and hence the age for the stratigraphic level at which NAV-118 00-2B was sampled within the Ghaub Formation. Each of the other alternative interpreted ages 119 (Fig. 1) overlap with each other and thus the choice of interpreted date has no significant impact. 120 We consider that alternative interpretations based upon the older age (ca. 636.5 Ma) are much more 121 difficult to justify as they require the cluster of concordant overlapping dates at ca. 635.5 Ma to be 122 too young due to Pb-loss, which we consider highly unlikely.
- 123

124 **References cited**

- Krogh, T. E., 1973, A low contamination method for hydrothermal decomposition of zircon and
 extraction of U and Pb for isotopic age determination. *Geochimica et Cosmochimica Acta* 37, 485-494.
- Gerstenberger, H. and Haase, G., 1977, A highly effective emitter substance for mass
 spectrometric Pb isotope ratio determinations. *Chemical Geology* 136, 309.
- 3. Bowring, J. F., McLean, N. M., and Bowring, S. A., 2011, Engineering cyber infrastructure for
 U-Pb geochronology: Tripoli and U-Pb_Redux. *Geochem. Geophys. Geosyst.* 12, Q0AA19,
 doi:10.1029/2010gc003479.
- 4. McLean, N., Bowring, J., and Bowring, S., 2011, An Algorithm for U-Pb Isotope Dilution Data
 Reduction and Uncertainty Propagation. *Geochemistry Geophysics Geosystems*.

135 5. McLean, N., Condon, D. J., Schoene, B., and Bowring, S. A., 2015, Evaluating Uncertainties in

- 136the Calibration of Isotopic Reference Materials and Multi-Element Isotopic Tracers
- 137 (EARTHTIME Tracer Calibration Part II). *Geochimica et Cosmochimica Acta*,
 138 doi:10.1016/j.gca.2015.02.040.
- 6. Condon, D. J., Schoene, B., Mclean, N., Bowring, S. A., and Parrish, R., 2015, Metrology and
 Traceability of U-Pb Isotope Dilution Geochronology (EARTHTIME Tracer Calibration
- 141 Part I). *Geochimica et Cosmochimica Acta*, doi:10.1016/j.gca.2015.05.026.

108

- 7. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M., 1971, Precision
 measurement of half-lives and specific of ²³⁵U and ²³⁸U. *Physics Reviews* C4, 1889-1906.
- 8. Hiess, J., Condon, D. J., McLean, N., and Noble, S. R., 2012, ²³⁸U/²³⁵U Systematics in Terrestrial
 Uranium-Bearing Minerals. *Science* 335, 1610-1614, doi:10.1126/science.1215507.
- 9. Hoffmann, K.-H., Condon, D., Bowring, S., and Crowley, J., 2004, U-Pb zircon date from the
 Neoproterozoic Ghaub Formation, Namibia: constraints on Marinoan glaciation. *Geology*32, 817.
- 149 10. Condon, D. *et al.*, 2005, U-Pb ages from the Neoproterozoic Doushantuo formation, China.
 150 *Science* 308, 95.
- 151 11. Mattinson, J. M., 2010, Analysis of the relative decay constants of 235U and 238U by multi 152 step CA-TIMS measurements of closed-system natural zircon samples. *Chemical Geology* 153 275, 186-198.
- 154 12. Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., and Bowring, S. A., 2006,
 155 Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data.
 156 *Geochimica et Cosmochimica Acta* 70, 426-445.
- 13. Mattinson, J. M., Graubard, C. M., Parkinson, D. L., and McClelland, W. C., 1996, in *Earth Processes: Reading the Isotopic Code* 355-370. American Geophysical Union.
- 14. Williams, I. S., Compston, W., Black, L. P., Ireland, T. R., and Foster, J. J., 1984, Unsupported
 radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages. *Contrib Mineral Petrol* 88, 322-327, doi:10.1007/BF00376756.
- 162 15. Mattinson, J. M., 2005, Zircon U-Pb chemical abrasion ("CA-TIMS") method: Combined
 163 annealing and multi-step partial dissolution analysis for improved precision and accuracy of
 164 zircon ages. *Chemical Geology* 220, 47-66.

165 166

Supplementary File Table 1. U-Pb analyses of Sample DW-1. 167

					_								
													_
										Com	position		_
	207Pb/	±2σ	207Pb/	±	2σ		Corr.			Th/		Pb*	
	235U a	abs	206Pb a	a	ıbs		coef.		% disc b	Uс		(pg) d	ł
56873	Mean = 639 20+0	0.26 [0.041%]	95% conf	3143716		5.254532308		0.46132761	-0.090246937		0.327013873		1
16763	Medin - 000.2010	rre only 0 of 9 r	oi	0903181		4.419005959		0.444784829	0.176353311		0.333060166		38

ov data for Sample DW-1

	206Pb/	±2σ	207Pb/	±2σ	207Pb/	±2σ	Corr.		Th/	Pb* F	Pbc	Pb*/
raction	238U a	abs	235U a	abs	206Pb a	abs	coef.	% disc b	Uc	(pg) d (pg) e	Pbc f
lircon												
z4	639.891333	0.593356873	Mean = 639 29+0 3	26 [0.041%] 95% c	onf 3143716	5.254532308	0.46132761	-0.090246937	0.327013873	11.0945386	0.319776778	34.69463498
z11	639.959734	0.61116763	Wtd by data-pt err	sonly 0 of 9 rei	0903181	4.419005959	0.444784829	0.176353311	0.333060166	38.57476318	1.064909851	36.22350112
z16	637.495722	0.40515678	MSWD = 2.6 proh	ability = 0.008	6570565	3.932135184	0.35297439	0.493451899	0.32174235	19.93618539	0.43823687	45.49180309
z17	639.006123	0.303639676	morre morphon		,0301121	5.005617457	0.249856013	-0.152972577	0.323888831	30.22943263	0.902513177	33.49472718
z21	638.875874	0.477552232	638.4905503	1.058814803	637.1271885	4.310621783	0.454308748	-0.274464237	0.30921582	13.59503911	0.288702932	47.09006243
z22	639.618586	0.385317862	639.3808723	1.567990007	638.5409702	6.992279451	0.18125451	-0.168762282	0.323381833	12.20140233	0.5066661	24.08174208
z24	639.398314	0.357451224	639.2112335	0.995533127	638.5500308	4.275124401	0.324633254	-0.132845268	0.303400454	12.45031276	0.298627603	41.69176809
z25	639.024352	0.437395676	639.3931888	1.951032642	640.6967066	8.618269804	0.231042999	0.26102117	0.317045465	13.53249896	0.744581906	18.17462772
z26	639.174631	0.395637107	639.8462088	1.663527279	642.2181997	7.280926619	0.270989422	0.473914918	0.322849444	9.54954437	0.394464528	24.20887988
z27	639.374369	0.518935497	639.9054507	3.063162745	641.7809117	13.69295819	0.163923419	0.374978758	0.322526696	18.45161327	1.643269872	11.22859585
	Isotopic Ratios	206Pb/		207Pb/		207Pb/		208Pb/				
	204Pb a	238U h	±2σ %	235U h	±2σ %	206Pb h	±2σ %	232Th h	±2σ %			
										-		
z4	2191.90176	0.104356865	0.097406106	0.877744978	0.273430886	0.0610295	0.242138987	-	-			
z11	2283.91469	0.104368583	0.100319739	0.878568751	0.229445772	0.061079918	0.202943566	-	-			
z16	2872.31770	L 0.103946541	0.066748714	0.874839743	0.195417113	0.061067613	0.179965816	-	-			
z17	2118.5420	0.104205227	0.049911498	0.875946448	0.240065945	0.060993075	0.23040829	-	-			
z21	2982.86275	0.104182917	0.078514014	0.875391464	0.223398226	0.060967484	0.197704085	-	-			
z22	1528.44850	0.104310141	0.063279853	0.877036592	0.330497673	0.061007561	0.323425933	-	-			
z24	2647.03	L 0.104272408	0.058722617	0.876723024	0.209876385	0.061007818	0.19607984	-	-			
z25	1159.85069	L 0.10420835	0.07189601	0.87705936	0.411228915	0.061068739	0.399461002	-	-			
z26	1536.49946	0.104234091	0.065017487	0.877897009	0.350451737	0.061111967	0.337115973	-	-			
z27	722.435375	0.104268306	0.08525453	0.878006577	0.645267067	0.061099539	0.636046517	-	-			

a Isotopic calculated using the decay constants A238 = 1.55125E-10 and A235 = 9.8485E-10 (Jaffey et al. 1971). b % discordance = 100 - (100 * (200PH/238U date) (207PH/200PH date)) c Th contents calculated from radiogenic 208Pb and the 230Th-corrected 206Pb/238U date of the sample, assuming concordance between the U-Pb and Th-Pb systems. d Total mass of common Pb. f Ratio of radiogenic Pb (including 208Pb) to common Pb. g Measured ratio corrected for fractionation and spike contribution only. h Measured ratio corrected for fractionation, tracer and blank.

168

DW-1

Dates (Ma

169 Supplementary File Table 2. U-Pb analyses of Sample NAV-00-2B.

AV-00-2B														
		Dates (Ma)									Composition			
		206Pb/	±2σ	207Pb/	±2σ	207Pb/	±2σ		Corr.		Th/	Pb*	Pbc	Pb*/
raction		238U a	abs	235U a	abs	206Pb a	abs		coef.	% disc b	Uc	(pg) d	(pg) e	Pbc f
rcon														
	zł	630.325841	1.427257	64 632.342541	1.500599	293 639.559	3176	4.16779408	0.79568455	6 1.44372481	7 0.98958823	25.95531637	0.244748012	106.0491409
	z2	634.8152933	0.3610896	68 Mean = 635.48±0.	.53 [0.083%] 95	% conf. 229	458	3.268830557	0.44258728	4 0.11134964	6 0.781902518	32.11375832	0.488536297	65.73464149
	z3	635.0074513	0.6167821	93 Wtd by data-pt en	rs only, 0 of 7 rej.	642	267	11.02132127	0.22434428	7 -0.48155013	B 0.836137413	29.01789356	1.796549443	16.152015
	z4	635.1102299	1.0415233	52 MSWD = 5.1, prol	bability = 0.000	918	621	5.189286138	0.55218916	6 -0.08168522	7 0.914774793	9.246059087	0.185963632	49.71971655
	z5	635.4811482	0.4809012	23 Mowu - 1.9, pro	Dabinty = 0.15	428	952	6.55450615	0.26134931	7 0.4483087	3 0.921515449	24.2462356	0.818413401	29.62590246
	Z6	635.9269141	0.5373590	89 000.401000	1.003444		766	4.551318296	0.388076	2 -0.3414110	4 0.689124473	17.39778845	0.399523434	43.54635294
	Z/	636.0251646	0.4916561	54 636.432005	1.569225	539 637.8769	387	6.814527199	0.30427031	4 0.29030272	3 0.79383048	20.44741294	0.770848267	26.52585963
	28	636.0837863	0.4650911	09 636.900984	1.969787	639.8016	166	8.951018375	0.09438878	2 0.5810911	1 0.688131313	21.51517978	1.116393504	19.27203956
	Z9	636.4896941	0.3468900	26 636.619738	1.05222	637.0814	001	4.612233493	0.26802202	6 0.09287760	7 0.89792076	25.57007839	0.56140369	45.54668745
	210	636.5327889	0.4503264	07 636.912251:	5 2.014466	638.2588	544	8.926365678	0.23152682	1 0.27045345	1.003725792	29.83487454	1.432269794	20.83048505
	Z11	636.5415143	0.5304219	56 636.3381/3.	1.125291	635.6160	755	5.042806223	0.22575825	9 -0.14559/13	0.9932986	14.90304587	0.203369322	73.28069793
	Z12	637.0500133	0.9071411	09 055.549019	+ 1.005459	527 636 4034	476	0.851032134	0.45119287	7 -0.78714596	0.088043899	3.542/5/95/	0.259901246	32.86916894
	215	637.0590152	0.7420504	50 050.91400	1.0/0052	527 050.4054	470	7.940955599	0.37501024		0.00902055	27.29740509	0.785902052	34.0223430
	214	632.0526717	0.9044058	15 637 563570	+ 1.952228	272 622 6422	353	7 214621559	0.89529015	4 =1.5015959	1 01927082523	0 26247569	0.313825711	34.90004500
	215	050.5520717	0.577803	1. 037.303370.	1.042522	575 052.0455	555	/.514051550	0.45511561	-0.99729733	5 1.010274020	5.30347300	0.244455542	58.50052200
		Isotopic Ratios										Fraction		
		206Pb/	206Pb/		207Pb/		207P	o/		208Pb/				
		204Pb g	238U h	±2σ %	235U h	±2σ %	206P	> h	±2σ %	232Th h	±2σ %	_		
	21	5657.914072	0.102719	84 0.23768228	4 0.864070	528 0.31882	1774	0.06103645	0.19105419	5 —				
	z2	3688.313952	0.1034876	14 0.05972772	L 0.868901	235 0.168555	117	0.060922052	0.14838985	8				
	z3	908.4355099	0.1035205	0.101992359	0.867741	375 0.524910	654	0.060821432	0.51074944	1				
	z4	2708.596134	0.1035381	0.1722019	0.868949	178 0.288743	899	0.060895704	0.23888721	1				
	z5	1618.630386	0.10360	16 0.079466399	0.870998	998 0.315635	823	0.061001944	0.30295719	6				
	z6	2504.826885	0.1036779	16 0.088736539	0.869787	594 0.229380	104	0.060872268	0.2089115	4				
	z7	1494.863496	0.1036947	37 0.08117747	0.871593	226 0.331858	556	0.060988733	0.31508551	2				
	z8	1118.756286	0.1037047	74 0.07678457	0.872457	366 0.416348	587	0.061043327	0.41492131	6				
	Z9	2492.366572	0.1037742	73 0.057235321	0.871939	294 0.2224/7	296	0.060966187	0.21189388	9				
	210	1122.441/66	0.103/816	52 0.0742970	9 0.872478	0.425/86	815	0.060999561	0.41366488	5				
	Z11	3912.570586	0.103/831	46 0.0875105	L 0.8/1420	278 0.238000	926	0.060924688	0.23205876	9				
	Z12	1895.423855	0.103800	24 U.149640369	0.869967	+64 0.352561	718	0.060813101	0.31646083	2				
	z13	1913.492038	0.1038/1/	0.12242657:	0.8/2483	+03 0.39/11/	012	0.060946982	0.36/58686	4				
	214	2042 545650	0.10389	70 0.149062240	0.869066	0.41349/	1009	0.060840616	0.28041400					
	213	2042.343039	0.1041900	. 0.100/51/1:	0.075680	0.009242		0.000040010	0.00014/00	,				

a Isotopic dates calculated using the decay constants A238 = 1.55125E-10 and A235 = 9.8485E-10 (Jaffey et al. 1971). b % discordance = 100 - (100 * (2005Pic/284) date) / (2077Pic/206Pb date)) c Th contents calculated from radiogenic 208Pb and the 230Th-corrected 206Pb/238U date of the sample, assuming conc d Total mass of radiogenic Pb. e Total mass of common Pb. f Ratio of radiogenic Pb (including 208Pb) to common Pb. g Measured ratio corrected for fractionation and spike contribution only. h Measured ratio corrected for fractionation, tracer and blank. rdance between the U-Pb and Th-Pb system

 $\begin{array}{c} 170\\171 \end{array}$ 172

Supplementary File Figure 1. U-Pb concordia diagram for zircon analyses of Sample NAV-00-2B.

