260 research outputs found

    Phase-field study of crack nucleation and propagation in elastic - perfectly plastic bodies

    Get PDF
    Crack initiation and propagation in elastic - perfectly plastic bodies is studied in a phase-field or variational gradient damage formulation. A rate-independent formulation that naturally couples elasticity, perfect plasticity and fracture is presented, and used to study crack initiation in notched specimens and crack propagation using a surfing boundary condition. Both plane strain and plane stress are addressed. It is shown that in plane strain, a plastic zone blunts the notch or crack tip which in turn inhibits crack nucleation and propagation. Sufficient load causes the crack to nucleate or unpin, but the crack does so with a finite jump. Therefore the propagation is intermittent or jerky leaving behind a rough surface. In plane stress, failure proceeds with an intense shear zone ahead of the notch or crack tip and the fracture process is not complete

    Impact of prosthesis-patient mismatch in the mitral position on left atrial and pulmonary arterial pressures: a numerical study

    No full text
    Prosthesis-patient mismatch (PPM) occurs when the effective orifice area (EOA) of the prosthesis is too small in relation to the body size and thus to the cardiac output requirement of the patient. A recent retrospective study from our group suggests that mitral PPM defined as an indexed EOA < 1.2 cm2/m2 is associated with lesser regression of pulmonary hypertension after mitral valve replacemen

    Callosal connections of dorsal versus ventral premotor areas in the macaque monkey: a multiple retrograde tracing study

    Get PDF
    BACKGROUND: The lateral premotor cortex plays a crucial role in visually guided limb movements. It is divided into two main regions, the dorsal (PMd) and ventral (PMv) areas, which are in turn subdivided into functionally and anatomically distinct rostral (PMd-r and PMv-r) and caudal (PMd-c and PMv-c) sub-regions. We analyzed the callosal inputs to these premotor subdivisions following 23 injections of retrograde tracers in eight macaque monkeys. In each monkey, 2–4 distinct tracers were injected in different areas allowing direct comparisons of callosal connectivity in the same brain. RESULTS: Based on large injections covering the entire extent of the corresponding PM area, we found that each area is strongly connected with its counterpart in the opposite hemisphere. Callosal connectivity with the other premotor areas, the primary motor cortex, prefrontal cortex and somatosensory cortex varied from one area to another. The most extensive callosal inputs terminate in PMd-r and PMd-c, with PMd-r strongly connected with prefrontal cortex. Callosal inputs to PMv-c are more extensive than those to PMv-r, whose connections are restricted to its counterpart area. Quantitative analysis of labelled cells confirms these general findings, and allows an assessment of the relative strength of callosal inputs. CONCLUSION: PMd-r and PMv-r receive their strongest callosal inputs from their respective counterpart areas, whereas PMd-c and PMv-c receive strong inputs from heterotopic areas as well (namely from PMd-r and PMv-r, respectively). Finally, PMd-r stands out as the lateral premotor area with the strongest inputs from the prefrontal cortex, and only the PMd-c and PMv-c receive weak callosal inputs from M1

    KTa0.6Nb0.4O3 Ferroelectric Thin Film Behavior at Microwave Frequencies for Tunable Applications

    No full text
    "©20xx IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE."International audienceIn this study about the relationships between structural and microwave electrical properties of KTa1-xNbxO3 (KTN) ferroelectric materials, a KTN thin film was deposited on different substrates to investigate how KTN growth affects the microwave behavior. Interdigital capacitors and stubs were made on these films through a simple engraving process. Microwave measurements under a static electric field showed the importance of the substrate on the circuit behavior and, notably, on the tuning factor

    Phase-field study of crack nucleation and propagation in elastic-perfectly plastic bodies

    Get PDF
    Crack initiation and propagation in elastic–perfectly plastic bodies is studied in a phase-field or variational gradient damage formulation. A rate-independent formulation that naturally couples elasticity, perfect plasticity and fracture is presented, and used to study crack initiation in notched specimens and crack propagation using a surfing boundary condition. Both plane strain and plane stress are addressed. It is shown that in plane strain, a plastic zone blunts the notch or crack tip which in turn inhibits crack nucleation and propagation. Sufficient load causes the crack to nucleate or unpin, but the crack does so with a finite jump. Therefore the propagation is intermittent or jerky leaving behind a rough surface. In plane stress, failure proceeds with an intense shear zone ahead of the notch or crack tip and the fracture process is not complete

    Study of ferroelectric/dielectric multilayers for tunable stub resonator applications at microwaves

    Get PDF
    International audienceTunable coplanar waveguide stub resonators deposited on various ferroelectric/dielectric heterostructures are studied in the 10-GHz band. A frequency tunability of up to ~ 45% is achieved under a moderate biasing field (Ebias < 100 kV/cm) when the resonator is printed on KTa0.5Nb0.5O3 (KTN) ferroelectric thin film alone: this comes from the large permittivity agility of the KTN material (Δr(KTN) varies from ~ 700 to ~ 200). Nevertheless this also leads to significant insertion loss due to the dielectric loss of the ferroelectric material itself (tanÎŽr(KTN) ≈ 0.15-0.30 at 10 GHz). In this paper, an original route has been considered to reduce the device loss while keeping up a high frequency tunability. It consists in associating the KTN film with a dielectric film to elaborate ferroelectric/dielectric multilayers. The Bi1.5Zn0.9Nb1.5O7−ή (BZN) oxide material is selected here for two main reasons, namely its low dielectric loss (tanÎŽr(BZN) ≈ 0.005-0.0075) and its moderate relative permittivity (Δr(BZN) ≈ 95-125) at 12.5 GHz. The relevance of this approach is studied numerically and experimentally. We compare numerically two different heterostructures for which the ferroelectric film is grown on the dielectric film (KTN/BZN), or vice versa (BZN/KTN). A stub resonator printed on the most relevant heterostructure has been fabricated, and experimental data are discussed and compared to the numerical results

    Pulsed laser deposited KNbO3_3 thin films for applications in high frequency range

    No full text
    Potassium niobate thin films were grown by pulsed laser deposition on various substrates. Influence of deposition conditions on film characteristics was studied. Structural investigation evidenced that single phase polycrystalline randomly oriented films were grown on sintered alumina whereas epitaxial films were grown on (100)SrTiO3_3 and (100)MgO substrates. The microstructure was highly controlled by the structural characteristics. Interdigited capacitors built from KNbO3 films on two different substrates (alumina and MgO) showed the strong influence of the structural characteristics on the dielectric behavior. The variation of the equivalent capacitance measured on the interdigital capacitor on MgO was 6.4% at 2.5 GHz while it was 1.5% on alumina, in both cases for a moderate applied field of ∌\sim15 kV cm−1^{-1}. The results show the potentiality of these ferroelectric materials for use in frequency agile microwave electronics

    Loss reduction technique in ferroelectric tunable devices by laser micro-etching. Application to a CPW stub resonator in X-band

    Get PDF
    International audienceFerroelectric materials are known to be lossy at microwaves. A local microetching technique based on laser ablation is implemented here to reduce the insertion loss of highly tunable devices fabricated on KTa1-xNbxO3 (KTN) ferroelectric thin films. The relevance of this approach is studied in X-band by comparing numerically and experimentally the performance of a frequency-tunable coplanar waveguide stub resonator before and after KTN microetching. The experimental data demonstrate a large loss reduction (by a factor 3.3), while keeping a high-frequency tunability (47%) under a moderate biasing static electric field (80 kV/cm). This approach paves the way for the design of ferroelectric reconfigurable devices with attractive performance in X-band and even beyond

    Prehension movements in a patient (AC) with posterior parietal cortex damage and posterior callosal section

    Get PDF
    Prehension movements of the right hand were recorded in a right-handed man (AC), with an injury to the left posterior parietal cortex (PPC) and with a section of the left half of the splenium. The kinematic analysis of AC’s grasping movements in direct and perturbed con- ditions was compared to that of Wve control subjects. A novel eVect in prehension was revealed—a hemispace eVect—in healthy controls only. Movements to the left hemispace were faster, longer, and with a smaller grasp aperture; perturbation of both object position and distance resulted in the attenuation of the direction eVect on movement time and the time to velocity peak, with a reverse pattern in the time to maximum grip aperture. Nevertheless, the correlation between transport velocity amplitude and grasp aperture remained stable in both perturbed and non-perturbed movements, reXecting the coordination between reaching and grasping in control subjects. In contrast, transport and grasp, as well as their coordination in both direct and perturbed conditions, were negatively aVected by the PPC and sple- nium lesion in AC, suggesting that transport and grasp rely on two functionally identiWable subsystems
    • 

    corecore