358 research outputs found

    Balanced electron-hole transport in spin-orbit semimetal SrIrO3 heterostructures

    Get PDF
    Relating the band structure of correlated semimetals to their transport properties is a complex and often open issue. The partial occupation of numerous electron and hole bands can result in properties that are seemingly in contrast with one another, complicating the extraction of the transport coefficients of different bands. The 5d oxide SrIrO3 hosts parabolic bands of heavy holes and light electrons in gapped Dirac cones due to the interplay between electron-electron interactions and spin-orbit coupling. We present a multifold approach relying on different experimental techniques and theoretical calculations to disentangle its complex electronic properties. By combining magnetotransport and thermoelectric measurements in a field-effect geometry with first-principles calculations, we quantitatively determine the transport coefficients of different conduction channels. Despite their different dispersion relationships, electrons and holes are found to have strikingly similar transport coefficients, yielding a holelike response under field-effect and thermoelectric measurements and a linear, electronlike Hall effect up to 33 T.Comment: 5 pages, 4 figure

    Basic design and simulation of a SPECT microscope for in vivo stem cell imaging

    Get PDF
    The need to understand the behavior of individual stem cells at the various stages of their differentiation and to assess the resulting reparative action in pre-clinical model systems, which typically involves laboratory animals, provides the motivation for imaging of stem cells in vivo at high resolution. Our initial focus is to image cells and cellular events at single cell resolution in vivo in shallow tissues (few mm of intervening tissue) in laboratory mice and rates. In order to accomplish this goal we are building a SPECT-based microscope. We based our design on earlier theoretical work with near-field coded apertures and have adjusted the components of the system to meet the real-world demands of instrument construction and of animal imaging. Our instrumental design possesses a reasonable trade-off between field-of-view, sensitivity, and contrast performance (photon penetration). A layered gold aperture containing 100 pinholes and intended for use in coded aperture imaging application has been designed and constructed. A silicon detector connected to a TimePix readout from the CERN collaborative group was selected for use in our prototype microscope because of its ultra-high spatial and energy resolution capabilities. The combination of the source, aperture, and detector has been modeled and the coded aperture reconstruction of simulated sources is presented in this work

    Decision tree supported substructure prediction of metabolites from GC-MS profiles

    Get PDF
    Gas chromatography coupled to mass spectrometry (GC-MS) is one of the most widespread routine technologies applied to the large scale screening and discovery of novel metabolic biomarkers. However, currently the majority of mass spectral tags (MSTs) remains unidentified due to the lack of authenticated pure reference substances required for compound identification by GC-MS. Here, we accessed the information on reference compounds stored in the Golm Metabolome Database (GMD) to apply supervised machine learning approaches to the classification and identification of unidentified MSTs without relying on library searches. Non-annotated MSTs with mass spectral and retention index (RI) information together with data of already identified metabolites and reference substances have been archived in the GMD. Structural feature extraction was applied to sub-divide the metabolite space contained in the GMD and to define the prediction target classes. Decision tree (DT)-based prediction of the most frequent substructures based on mass spectral features and RI information is demonstrated to result in highly sensitive and specific detections of sub-structures contained in the compounds. The underlying set of DTs can be inspected by the user and are made available for batch processing via SOAP (Simple Object Access Protocol)-based web services. The GMD mass spectral library with the integrated DTs is freely accessible for non-commercial use at http://gmd.mpimp-golm.mpg.de/. All matching and structure search functionalities are available as SOAP-based web services. A XML + HTTP interface, which follows Representational State Transfer (REST) principles, facilitates read-only access to data base entities

    Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    Get PDF
    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms

    Basic design and simulation of a SPECT microscope for in vivo stem cell imaging

    Get PDF
    The need to understand the behavior of individual stem cells at the various stages of their differentiation and to assess the resulting reparative action in pre-clinical model systems, which typically involves laboratory animals, provides the motivation for imaging of stem cells in vivo at high resolution. Our initial focus is to image cells and cellular events at single cell resolution in vivo in shallow tissues (few mm of intervening tissue) in laboratory mice and rates. In order to accomplish this goal we are building a SPECT-based microscope. We based our design on earlier theoretical work with near-field coded apertures and have adjusted the components of the system to meet the real-world demands of instrument construction and of animal imaging. Our instrumental design possesses a reasonable trade-off between field-of-view, sensitivity, and contrast performance (photon penetration). A layered gold aperture containing 100 pinholes and intended for use in coded aperture imaging application has been designed and constructed. A silicon detector connected to a TimePix readout from the CERN collaborative group was selected for use in our prototype microscope because of its ultra-high spatial and energy resolution capabilities. The combination of the source, aperture, and detector has been modeled and the coded aperture reconstruction of simulated sources is presented in this work

    A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms

    Get PDF
    We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms ( SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds ( a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines - in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases

    Effects of Short Term Adiponectin Receptor Agonism on Cardiac Function and Energetics in Diabetic db/db Mice.

    Get PDF
    Objective Impaired cardiac efficiency is a hallmark of diabetic cardiomyopathy in models of type 2 diabetes. Adiponectin receptor 1 (AdipoR1) deficiency impairs cardiac efficiency in non-diabetic mice, suggesting that hypoadiponectinemia in type 2 diabetes may contribute to impaired cardiac efficiency due to compromised AdipoR1 signaling. Thus, we investigated whether targeting cardiac adiponectin receptors may improve cardiac function and energetics, and attenuate diabetic cardiomyopathy in type 2 diabetic mice. Methods A non-selective adiponectin receptor agonist, AdipoRon, and vehicle were injected intraperitoneally into Eight-week-old db/db or C57BLKS/J mice for 10 days. Cardiac morphology and function were evaluated by echocardiography and working heart perfusions. Results Based on echocardiography, AdipoRon treatment did not alter ejection fraction, left ventricular diameters or left ventricular wall thickness in db/db mice compared to vehicle-treated mice. In isolated working hearts, an impairment in cardiac output and efficiency in db/db mice was not improved by AdipoRon. Mitochondrial respiratory capacity, respiration in the presence of oligomycin, and 4-hydroxynonenal levels were similar among all groups. However, AdipoRon induced a marked shift in the substrate oxidation pattern in db/db mice towards increased reliance on glucose utilization. In parallel, the diabetes-associated increase in serum triglyceride levels in vehicle-treated db/db mice was blunted by AdipoRon treatment, while an increase in myocardial triglycerides in vehicle-treated db/db mice was not altered by AdipoRon treatment. Conclusion AdipoRon treatment shifts myocardial substrate preference towards increased glucose utilization, likely by decreasing fatty acid delivery to the heart, but was not sufficient to improve cardiac output and efficiency in db/db mice

    Study of recent and future trends in place of death in Belgium using death certificate data: a shift from hospitals to care homes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since most patients prefer out-of-hospital death, place of death can be considered an indicator of end-of-life care quality. The study of trends in place of death is necessary to examine causes of shifts, to evaluate efforts to alter place of death and develop future policies. This study aims to examine past trends and future projections of place of death.</p> <p>Methods</p> <p>Analysis of death certificates (decedents aged ≥ 1 year) in Belgium (Flanders and Brussels Capital region) 1998-2007. Trends in place of death were adjusted for cause of death, sociodemographic characteristics, environmental factors, numbers of hospital beds, and residential and skilled nursing beds in care homes. Future trends were based on age- and sex-specific mortality prognoses.</p> <p>Results</p> <p>Hospital deaths decreased from 55.1% to 51.7% and care home deaths rose from 18.3% to 22.6%. The percentage of home deaths remained stable. The odds of dying in a care home versus hospital increased steadily and was 1.65 (95%CI:1.53-1.78) in 2007 compared to 1998. This increase could be attributed to the replacement of residential beds by skilled nursing beds. Continuation of these trends would result in the more than doubling of deaths in care homes and a decrease in deaths at home and in hospital by 2040.</p> <p>Conclusions</p> <p>Additional end-of-life care resources in care homes largely explain the decrease in hospital deaths. Care homes will become the main locus of end-of-life care in the future. Governments should provide sufficient skilled nursing resources in care homes to fulfil the end-of-life care preferences and needs of patients.</p

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore