Basic design and simulation of a SPECT microscope for in vivo stem cell imaging

Abstract

The need to understand the behavior of individual stem cells at the various stages of their differentiation and to assess the resulting reparative action in pre-clinical model systems, which typically involves laboratory animals, provides the motivation for imaging of stem cells in vivo at high resolution. Our initial focus is to image cells and cellular events at single cell resolution in vivo in shallow tissues (few mm of intervening tissue) in laboratory mice and rates. In order to accomplish this goal we are building a SPECT-based microscope. We based our design on earlier theoretical work with near-field coded apertures and have adjusted the components of the system to meet the real-world demands of instrument construction and of animal imaging. Our instrumental design possesses a reasonable trade-off between field-of-view, sensitivity, and contrast performance (photon penetration). A layered gold aperture containing 100 pinholes and intended for use in coded aperture imaging application has been designed and constructed. A silicon detector connected to a TimePix readout from the CERN collaborative group was selected for use in our prototype microscope because of its ultra-high spatial and energy resolution capabilities. The combination of the source, aperture, and detector has been modeled and the coded aperture reconstruction of simulated sources is presented in this work

    Similar works