20 research outputs found
Performance enhancement solutions in wireless communication networks
In this dissertation thesis, we study the new relaying protocols for different wireless network systems. We analyze and evaluate an efficiency of the transmission in terms of the outage probability over Rayleigh fading channels by mathematical analyses. The theoretical analyses are verified by performing Monte Carlo simulations.
First, we study the cooperative relaying in the Two-Way Decode-and-Forward (DF) and multi-relay DF scheme for a secondary system to obtain spectrum access along with a primary system. In particular, we proposed the Two-Way DF scheme with Energy Harvesting, and the Two-Way DF Non-orthogonal Multiple Access (NOMA) scheme with digital network coding. Besides, we also investigate the wireless systems with multi-relay; the best relay selection is presented to optimize the effect of the proposed scheme. The transmission protocols of the proposed schemes EHAF (Energy Harvesting Amplify and Forward) and EHDF (Energy Harvesting Decode and Forward) are compared together in the same environment and in term of outage probability. Hence, with the obtained results, we conclude that the proposed schemes improve the performance of the wireless cooperative relaying systems, particularly their throughput.
Second, we focus on investigating the NOMA technology and proposing the optimal solutions (protocols) to advance the data rate and to ensure the Quality of Service (QoS) for the users in the next generation of wireless communications. In this thesis, we propose a Two-Way DF NOMA scheme (called a TWNOMA protocol) in which an intermediate relay helps two source nodes to communicate with each other. Simulation and analysis results show that the proposed protocol TWNOMA is improving the data rate when comparing with a conventional Two-Way scheme using digital network coding (DNC) (called a TWDNC protocol), Two-Way scheme without using DNC (called a TWNDNC protocol) and Two-Way scheme in amplify-and-forward(AF) relay systems (called a TWANC protocol).
Finally, we considered the combination of the NOMA and physical layer security (PLS) in the Underlay Cooperative Cognitive Network (UCCN). The best relay selection strategy is investigated, which uses the NOMA and considers the PLS to enhance the transmission efficiency and secrecy of the new generation wireless networks.V této dizertační práci je provedena studie nových přenosových protokolů pro různé bezdrátové síťové systémy. S využitím matematické analýzy jsme analyzovali a vyhodnotili efektivitu přenosu z hlediska pravděpodobnosti výpadku přes Rayleighův kanál. Teoretické analýzy jsou ověřeny provedenými simulacemi metodou Monte Carlo.
Nejprve došlo ke studii kooperativního přenosu ve dvoucestném dekóduj-a-předej (Two-Way Decode-and-Forward–TWDF) a vícecestném DF schématu s větším počtem přenosových uzlů pro sekundární systém, kdy takto byl získán přístup ke spektru spolu s primárním systémem. Konkrétně jsme navrhli dvoucestné DF schéma se získáváním energie a dvoucestné DF neortogonální schéma s mnohonásobným přístupem (Non-orthogonal Multiple Access–NOMA) s digitálním síťovým kódováním. Kromě toho rovněž zkoumáme bezdrátové systémy s větším počtem přenosových uzlů, kde je přítomen výběr nejlepšího přenosového uzlu pro optimalizaci efektivnosti navrženého schématu. Přenosové protokoly navržených schémat EHAF (Energy Harvesting Amplify and Forward) a EHDF(Energy Harvesting Decode and Forward) jsou společně porovnány v identickém prostředí z pohledu pravděpodobnosti výpadku. Následně, na základě získaných výsledků, jsme dospěli k závěru, že navržená schémata vylepšují výkonnost bezdrátových kooperativních systémů, konkrétně jejich propustnost.
Dále jsme se zaměřili na zkoumání NOMA technologie a navrhli optimální řešení (protokoly) pro urychlení datového přenosu a zajištění QoS v další generaci bezdrátových komunikací. V této práci jsme navrhli dvoucestné DF NOMA schéma (nazýváno jako TWNOMA protokol), ve kterém mezilehlý přenosový uzel napomáhá dvěma zdrojovým uzlům komunikovat mezi sebou. Výsledky simulace a analýzy ukazují, že navržený protokol TWNOMA vylepšuje dosaženou přenosovou rychlost v porovnání s konvenčním dvoucestným schématem používajícím DNC (TWDNC protokol), dvoucestným schématem bez použití DNC (TWNDNC protokol) a dvoucestným schématem v zesil-a-předej (amplify-and-forward) přenosových systémech (TWANC protokol).
Nakonec jsme zvážili využití kombinace NOMA a zabezpečení fyzické vrstvy (Physical Layer Security–PLS) v podpůrné kooperativní kognitivní síti (Underlay Cooperative Cognitive Network–UCCN). Zde je zde zkoumán výběr nejlepšího přenosového uzlu, který užívá NOMA a bere v úvahu PLS pro efektivnější přenos a zabezpečení nové generace bezdrátových sítí.440 - Katedra telekomunikační technikyvyhově
Secrecy outage probability of a NOMA scheme and impact imperfect channel state information in underlay cooperative cognitive networks
Security performance and the impact of imperfect channel state information (CSI) in underlay cooperative cognitive networks (UCCN) is investigated in this paper. In the proposed scheme, relay R uses non-orthogonal multiple access (NOMA) technology to transfer messages e1, e2 from the source node S to User 1 (U-1) and User 2 (U-2), respectively. An eavesdropper (E) is also proposed to wiretap the messages of U-1 and U-2. The transmission's security performance in the proposed system was analyzed and performed over Rayleigh fading channels. Through numerical analysis, the results showed that the proposed system's secrecy performance became more efficient when the eavesdropper node E was farther away from the source node S and the intermediate cooperative relay R. The secrecy performance of U-1 was also compared to the secrecy performance of U-2. Finally, the simulation results matched the Monte Carlo simulations well.Web of Science203art. no. 89
Secrecy performance of underlay cooperative cognitive network using non-orthogonal multiple access with opportunistic relay selection
In this paper, an underlay cooperative cognitive network using a non-orthogonal multiple access (UCCN-NOMA) system is investigated, in which the intermediate multiple relays help to decode and forward two signals x1 and x2 from a source node to two users D-1 and D-2, respectively, under wiretapping of an eavesdropper (E). We study the best relay selection strategies by three types of relay selection criteria: the first and second best relay selection is based on the maximum channel gain of the links Ri-D1, Ri-D-2, respectively; the third one is to ensure a minimum value of the channel gains from the Ri-E link. We analyze and evaluate the secrecy performances of the transmissions x1 and x2 from the source node to the destination nodes D-1, D-2, respectively, in the proposed UCCN-NOMA system in terms of the secrecy outage probabilities (SOPs) over Rayleigh fading channels. Simulation and analysis results are presented as follows. The results of the (sum) secrecy outage probability show that proposed scheme can realize the maximal diversity gain. The security of the system is very good when eavesdropper node E is far from the source and cooperative relay. Finally, the theoretical analyses are verified by performing Monte Carlo simulations.Web of Science113art. no. 38
Outage and bit error probability analysis in energy harvesting wireless cooperative networks
This study focuses on a wireless powered cooperative communication network (WPCCN), which includes a hybrid access point (HAP), a source and a relay. The considered source and relay are installed without embedded energy supply (EES), thus are dependent on energy harvested from signals from the HAP to power their cooperative information transmission (IT). Taking inspiration from this, the author group investigates into a harvest-then-cooperate (HTC) protocol, whereas the source and the relay first harvest the energy from the AP in a downlink (DL) and then collaboratively work in uplink (UL) for IT of the source. For careful evaluation of the system performance, derivations of the approximate closed-form expression of the outage probability (OP) and an average bit error probability ( ABER) for the HTC protocol over Rayleigh fading channels are done. Lastly, the author group performs Monte-Carlo simulations to reassure the numerical results they obtained.Web of Science255746
Planning for Developing Students’ Statistical Literacy: A Research-Informed Framework Development
Teachers’ planning as a research area still receives little attention. This study focuses on developing a research-informed framework to assess teachers’ statistics lesson plans. Using a design-based research approach, we developed a framework that includes (a) two criteria related to learning intentions (clear and comprehensive), (b) four criteria related to task features (statistical literacy, statistical investigation, real data, multiple representations), and (c) one related to constructivist lessons. Then, the team provided professional development on statistical literacy and ways to elicit and develop it in the classroom. After that, the teachers discussed the framework and used it to revise their lesson plans. Also, teachers provided feedback to revise the framework. We discuss how the framework can offer a tool for researchers to examine teacher planning competence and teachers to reflect on their practice
Wearable devices for remote monitoring of hospitalized patients with COVID-19 in Vietnam
Patients with severe COVID-19 disease require monitoring with pulse oximetry as a minimal requirement. In many low- and middle- income countries, this has been challenging due to lack of staff and equipment. Wearable pulse oximeters potentially offer an attractive means to address this need, due to their low cost, battery operability and capacity for remote monitoring. Between July and October 2021, Ho Chi Minh City experienced its first major wave of SARS-CoV-2 infection, leading to an unprecedented demand for monitoring in hospitalized patients. We assess the feasibility of a continuous remote monitoring system for patients with COVID-19 under these circumstances as we implemented 2 different systems using wearable pulse oximeter devices in a stepwise manner across 4 departments
Spatiotemporal evolution of SARS-CoV-2 Alpha and Delta variants during large nationwide outbreak of COVID-19, Vietnam, 2021
We analyzed 1,303 SARS-CoV-2 whole-genome sequences from Vietnam, and found the Alpha and Delta variants were responsible for a large nationwide outbreak of COVID-19 in 2021. The Delta variant was confined to the AY.57 lineage and caused >1.7 million infections and >32,000 deaths. Viral transmission was strongly affected by nonpharmaceutical interventions
Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial
Background
Trials of fluoxetine for recovery after stroke report conflicting results. The Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) trial aimed to show if daily oral fluoxetine for 6 months after stroke improves functional outcome in an ethnically diverse population.
Methods
AFFINITY was a randomised, parallel-group, double-blind, placebo-controlled trial done in 43 hospital stroke units in Australia (n=29), New Zealand (four), and Vietnam (ten). Eligible patients were adults (aged ≥18 years) with a clinical diagnosis of acute stroke in the previous 2–15 days, brain imaging consistent with ischaemic or haemorrhagic stroke, and a persisting neurological deficit that produced a modified Rankin Scale (mRS) score of 1 or more. Patients were randomly assigned 1:1 via a web-based system using a minimisation algorithm to once daily, oral fluoxetine 20 mg capsules or matching placebo for 6 months. Patients, carers, investigators, and outcome assessors were masked to the treatment allocation. The primary outcome was functional status, measured by the mRS, at 6 months. The primary analysis was an ordinal logistic regression of the mRS at 6 months, adjusted for minimisation variables. Primary and safety analyses were done according to the patient's treatment allocation. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611000774921.
Findings
Between Jan 11, 2013, and June 30, 2019, 1280 patients were recruited in Australia (n=532), New Zealand (n=42), and Vietnam (n=706), of whom 642 were randomly assigned to fluoxetine and 638 were randomly assigned to placebo. Mean duration of trial treatment was 167 days (SD 48·1). At 6 months, mRS data were available in 624 (97%) patients in the fluoxetine group and 632 (99%) in the placebo group. The distribution of mRS categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio 0·94, 95% CI 0·76–1·15; p=0·53). Compared with patients in the placebo group, patients in the fluoxetine group had more falls (20 [3%] vs seven [1%]; p=0·018), bone fractures (19 [3%] vs six [1%]; p=0·014), and epileptic seizures (ten [2%] vs two [<1%]; p=0·038) at 6 months.
Interpretation
Oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and epileptic seizures. These results do not support the use of fluoxetine to improve functional outcome after stroke
Exact outage probability of two-way decode-and-forward NOMA scheme with opportunistic relay selection
In this paper, we propose a two-way relaying scheme using non-orthogonal multiple access (NOMA) technology. In this scheme, two sources transmit packets with each other under the assistance of the decode-and-forward (DF) relays, called as a TWDFNOMA protocol. The cooperative relays exploit successive interference cancellation (SIC) technique to decode sequentially the data packets from received summation signals, and then use the digital network coding (DNC) technique to encrypt received data from two sources. A max-min criterion of end-to-end signal-to-interference-plus-noise ratios (SINRs) is used to select a best relay in the proposed TWDFNOMA protocol. Outage probabilities are analyzed to achieve exact closed-form expressions and then, the system performance of the proposed TWDFNOMA protocol is evaluated by these probabilities. Simulation and analysis results discover that the system performance of the proposed TWDFNOMA protocol is improved when compared with a conventional three-timeslot two-way relaying scheme using DNC (denoted as a TWDNC protocol), a four-timeslot two-way relaying scheme without using DNC (denoted as a TWNDNC protocol) and a two-timeslot two-way relaying scheme with amplify-and-forward operations (denoted as a TWANC protocol). Particularly, the proposed TWDFNOMA protocol achieves best performances at two optimal locations of the best relay whereas the midpoint one is the optimal location of the TWDNC and TWNDNC protocols. Finally, the probability analyses are justified by executing Monte Carlo simulations.Web of Science13125887586
Secrecy Outage Probability of a NOMA Scheme and Impact Imperfect Channel State Information in Underlay Cooperative Cognitive Networks
Security performance and the impact of imperfect channel state information (CSI) in underlay cooperative cognitive networks (UCCN) is investigated in this paper. In the proposed scheme, relay R uses non-orthogonal multiple access (NOMA) technology to transfer messages e 1 , e 2 from the source node S to User 1 (U1) and User 2 (U2), respectively. An eavesdropper (E) is also proposed to wiretap the messages of U1 and U2. The transmission’s security performance in the proposed system was analyzed and performed over Rayleigh fading channels. Through numerical analysis, the results showed that the proposed system’s secrecy performance became more efficient when the eavesdropper node E was farther away from the source node S and the intermediate cooperative relay R. The secrecy performance of U1 was also compared to the secrecy performance of U2. Finally, the simulation results matched the Monte Carlo simulations well