10,247 research outputs found

    Kiloparsec-Scale Simulations of star formations in disk galaxies. III. Structure and dynamics of filaments and clumps in giant molecular clouds

    Get PDF
    We present hydrodynamic simulations of self-gravitating dense gas in a galactic disk, exploring scales ranging from 1 kpc down to ~0.1 pc. Our primary goal is to understand how dense filaments form in giant molecular clouds (GMCs). These structures, often observed as infrared dark clouds (IRDCs) in the Galactic plane, are thought to be the precursors to massive stars and star clusters, so their formation may be the rate-limiting step controlling global star formation rates in galactic systems as described by the Kennicutt–Schmidt relation. Our study follows on from Van Loo et al., which carried out simulations to 0.5 pc resolution and examined global aspects of the formation of dense gas clumps and the resulting star formation rate. Here, using our higher resolution, we examine the detailed structural, kinematic, and dynamical properties of dense filaments and clumps, including mass surface density (Σ) probability distribution functions, filament mass per unit length and its dispersion, lateral Σ profiles, filament fragmentation, filament velocity gradients and infall, and degree of filament and clump virialization. Where possible, these properties are compared to observations of IRDCs. By many metrics, especially too large mass fractions of high Σ>1  g  cm−2{\Sigma }\gt 1\;{\rm g}\;{\rm c}{{{\rm m}}^{-2}} material, too high mass per unit length dispersion due to dense clump formation, too high velocity gradients, and too high velocity dispersion for a given mass per unit length, the simulated filaments differ from observed IRDCs. We thus conclude that IRDCs do not form from global fast collapse of GMCs. Rather, we expect that IRDC formation and collapse are slowed significantly by the influence of dynamically important magnetic fields, which may thus play a crucial role in regulating galactic star formation rates

    Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Get PDF
    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H2-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, star formation rates that are in excellent agreement with observations, with H2-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar star formation rates, but with very different temperature and chemical states of the gas, and with very different spatial distributions of young stars

    Alemtuzumab pre-conditioning with tacrolimus monotherapy in pediatric renal transplantation

    Get PDF
    We employed antibody pre-conditioning with alemtuzumab and posttransplant immunosuppression with low-dose tacrolimus monotherapy in 26 consecutive pediatric kidney transplant recipients between January 2004 and December 2005. Mean recipient age was 10.7 ± 5.8 years, 7.7% were undergoing retransplantation, and 3.8% were sensitized, with a PRA >20%. Mean donor age was 32.8 ± 9.2 years. Living donors were utilized in 65% of the transplants. Mean cold ischemia time was 27.6 ± 6.4 h. The mean number of HLA mismatches was 3.3 ± 1.3. Mean follow-up was 25 ± 8 months. One and 2 year patient survival was 100% and 96%. One and 2 year graft survival was 96% and 88%. Mean serum creatinine was 1.1 ± 0.6 mg/dL, and calculated creatinine clearance was 82.3 ± 29.4 mL/min/1.73 m 2. The incidence of pre-weaning acute rejection was 11.5%; the incidence of delayed graft function was 7.7%. Eighteen (69%) of the children were tapered to spaced tacrolimus monotherapy, 10.5 ± 2.2 months after transplantation. The incidence of CMV, PTLD and BK virus was 0%; the incidence of posttransplant diabetes was 7.7%. Although more follow-up is clearly needed, antibody pre-conditioning with alemtuzumab and tacrolimus monotherapy may be a safe and effective regimen in pediatric renal transplantation. © 2007 The Authors

    Swimming using surface acoustic waves

    Get PDF
    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel

    SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p

    Left gaze bias in humans, rhesus monkeys and domestic dogs

    Get PDF
    While viewing faces, human adults often demonstrate a natural gaze bias towards the left visual field, that is, the right side of the viewee’s face is often inspected first and for longer periods. Using a preferential looking paradigm, we demonstrate that this bias is neither uniquely human nor limited to primates, and provide evidence to help elucidate its biological function within a broader social cognitive framework. We observed that 6-month-old infants showed a wider tendency for left gaze preference towards objects and faces of different species and orientation, while in adults the bias appears only towards upright human faces. Rhesus monkeys showed a left gaze bias towards upright human and monkey faces, but not towards inverted faces. Domestic dogs, however, only demonstrated a left gaze bias towards human faces, but not towards monkey or dog faces, nor to inanimate object images. Our findings suggest that face- and species-sensitive gaze asymmetry is more widespread in the animal kingdom than previously recognised, is not constrained by attentional or scanning bias, and could be shaped by experience to develop adaptive behavioural significance

    Spinal cord stimulation for predominant low back pain in failed back surgery syndrome: study protocol for an international multicenter randomized controlled trial (PROMISE study)

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: Although results of case series support the use of spinal cord stimulation in failed back surgery syndrome patients with predominant low back pain, no confirmatory randomized controlled trial has been undertaken in this patient group to date. PROMISE is a multicenter, prospective, randomized, open-label, parallel-group study designed to compare the clinical effectiveness of spinal cord stimulation plus optimal medical management with optimal medical management alone in patients with failed back surgery syndrome and predominant low back pain. METHOD/DESIGN: Patients will be recruited in approximately 30 centers across Canada, Europe, and the United States. Eligible patients with low back pain exceeding leg pain and an average Numeric Pain Rating Scale score ≥5 for low back pain will be randomized 1:1 to spinal cord stimulation plus optimal medical management or to optimal medical management alone. The investigators will tailor individual optimal medical management treatment plans to their patients. Excluded from study treatments are intrathecal drug delivery, peripheral nerve stimulation, back surgery related to the original back pain complaint, and experimental therapies. Patients randomized to the spinal cord stimulation group will undergo trial stimulation, and if they achieve adequate low back pain relief a neurostimulation system using the Specify® 5-6-5 multi-column lead (Medtronic Inc., Minneapolis, MN, USA) will be implanted to capture low back pain preferentially in these patients. Outcome assessment will occur at baseline (pre-randomization) and at 1, 3, 6, 9, 12, 18, and 24 months post randomization. After the 6-month visit, patients can change treatment to that received by the other randomized group. The primary outcome is the proportion of patients with ≥50% reduction in low back pain at the 6-month visit. Additional outcomes include changes in low back and leg pain, functional disability, health-related quality of life, return to work, healthcare utilization including medication usage, and patient satisfaction. Data on adverse events will be collected. The primary analysis will follow the intention-to-treat principle. Healthcare use data will be used to assess costs and long-term cost-effectiveness. DISCUSSION: Recruitment began in January 2013 and will continue until 2016. TRIAL REGISTRATION: Clinicaltrials.gov: NCT01697358 (http://www.clinicaltrials.gov).The study is funded by Medtronic In

    A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin

    Get PDF
    The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5–Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response
    • …
    corecore