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The polarization response of 0.95[0.94(Bi0.5Na(0.45)Li0.05)TiO3-0.06BaTiO3]-0.05CaTiO3 ceramics

was studied under weak applied cyclic electric fields with different amplitudes and frequency. The

analysis of the polarization signals showed that in the ferroelectric phase the non-linearity is domi-

nated by a Rayleigh-type dynamics, while in the ergodic relaxor phase the polarization response devi-

ates from the Rayleigh-type behaviour due to the occurrence of short range electric field-induced

transitions, evidenced by the presence of four distinct frequency independent current broad peaks in

the current-electric field loops, which gives rise to a characteristic non-linear polarization-electric

field loop with reduced hysteresis and weak frequency dependence. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4895559]

Disordered systems such as dipolar glasses, relaxors,

and ferroelectrics exhibit a non-linear and frequency-

dispersive dielectric response when subjected to an external

applied electric field.1–3 This is caused by different underly-

ing mechanisms, including: (a) the reorientation of polar

regions according to the “superparaelectric model,”4 (b) the

enlargement of polar nanoregions as described in the so

called “breathing model,”5,6 and (c) the interaction of do-

main walls with pinning points which is often manifested as

a Rayleigh-like behaviour.7–11 The “superparaelectric mod-

el” assumes that local polarization vectors are reoriented via

thermally- and field-induced flipping with distributed energy

barriers which give rise to the amplitude and frequency de-

pendence of the permittivity.4 In the “breathing model,”2,5,6

it is imagined that polar regions are embedded in a non-polar

matrix and that they enlarge their size through the movement

of their walls under the action of the applied field. It is

assumed that the walls are partially pinned, hence only a por-

tion of their length can freely move under the action of the

electric field. The magnitude of such characteristic length,

within which the domain walls can bow, varies due to a ran-

dom distribution of pinning centres, leading to the amplitude

and frequency-dependence of the dielectric response.6

Another typical manifestation of non-linearity is represented

by the Rayleigh-like behaviour found in different types of

ferroic materials under weak cyclic applied fields.7–14 The

parabolic relationship known as the Rayleigh law was first

applied in ferromagnetic materials, where hysteretic

magnetisation-magnetic field (M-H) loops were observed

under weak applied magnetic fields.7,8 Rayleigh-type behav-

iour was then observed in ferroelectric/ferroelastic systems

that display non-linear and hysteretic polarization-electric

field (P-E)9–13 and strain-stress (S-r) loops.14 Until recently,

it has been commonly accepted that the Rayleigh-type

behaviour can be described by the motion of single

non-interacting domain walls in a potential energy land-

scape that is perturbed by the presence of randomly distrib-

uted pinning sites.8,9 In this framework, the susceptibility

has a logarithmic-type dependence on the frequency which

can be derived from random field theory.15 However, recent

investigations on lead zirconate titanate (PZT) thin and

thick films demonstrated that the underlying mechanisms of

the Rayleigh-type response are based on the motion of

interacting domain walls rather than single non-interacting

walls.16 The non-linearity has been attributed to the

dynamic coupling that exists between domain walls in the

ferroelectric phase.16 In addition, it has been shown that in

PZT thin films the Rayleigh-like behaviour observed at the

macroscale represents an average of individual non-

Rayleigh type response probed at the nanoscale originating

from the motion of ferroelastic walls.17 It is generally

accepted that a Rayleigh-type analysis performed by vary-

ing the amplitude and frequency of the applied field could

estimate the contributions of reversible and irreversible do-

main walls displacements to the non-linear response of dif-

ferent ferroic systems.8–14

In this work, the dielectric non-linearity of bismuth-

based perovskites was studied by performing a Rayleigh-

type analysis on the compound 0.95[0.94(Bi0.5Na(0.45)Li0.05)

TiO3-0.06BaTiO3]-0.05CaTiO3, in the temperature range

23 �C–150 �C. This particular system previously characterized18

was chosen because it experiences a transition from a ferro-

electric polar phase to a weakly polar relaxor state with

increasing temperature, and a transition from weakly polar to

ferroelectric state, with a change in the crystal structure, dur-

ing the application of an electric field.18 The harmonic analy-

sis of the Rayleigh-type response in such system could

potentially provide additional understanding on the possible

interconnections between electric field-induced transitions

and dielectric non-linearity in Bi0.5Na0.5TiO3 (BNT)-based
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ceramics and in other systems that experience electric-field

induced transitions.

The experiments were carried out on an initially

unpoled specimen, using a ferroelectric hysteresis measure-

ment tester (National Physical Laboratory, UK)19,20 at

different temperatures in the range 23 �C–150 �C. Current-

polarization-electric field (I-P-E) loops were generated

using sine waveforms of different electric field amplitudes

in the range 2.5–17.5 kV/cm at five different frequencies 1,

3, 5, 7, and 10 Hz. The electric field amplitudes used are

significantly lower than the electric field thresholds of the for-

ward transitions 6EF previously identified from the presence

of current peaks during cycling at higher electric field ampli-

tudes (60–70 kV/cm).18 In the range 100 �C–125 �C, the

applied amplitudes are comparable with the electric fields

labelled as the backward transition thresholds 6EB. However,

the latter correspond to current peaks which appear only at

electric field regime cycling conditions when the electric field

is increased beyond the threshold 6EF,18 and therefore are not

considered in the present discussion.

Figure 1 shows the current-polarization-electric field

curves generated at 5.0 kV/cm (Fig. 1(a)) and 17.5 kV/cm

(Fig. 1(b)) at 5Hz in the range 23 �C–150 �C. It can be seen

that the hysteresis of the P-E loops decreases with increasing

temperature and the P-E loop changes shape. With increasing

electric field amplitude and temperature, the I-E loops start

to change from an elliptic shape to a hippopede-like shape,

which become clearer and more distinct at 17.5 kV/cm am-

plitude and 150 �C (Fig. 1(b)) with the presence of broad

peaks separated by a depression in the electric field interval

around E¼ 0, related to the constriction that occurs in the

centre region at near zero field of the P-E loops. In Figure 1,

it is noted that in the P-E loops generated under the same

electric field amplitude and frequency, the maximum polar-

isation increases with increasing temperature until 125 �C
(Pmax¼ 0.0734 C/m2 at 17.5 kV/cm and 5 Hz) and then it

starts to decrease (Pmax¼ 0.0721 C/m2 at 150 �C, 17.5 kV/

cm, and 5 Hz). A similar effect was also previously observed

in the P-E loops of 0.95[0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3]-

0.05CaTiO3 generated at higher electric field amplitudes and

FIG. 1. Current-polarization-electric field

loops at different temperature in the range

23 �C–150 �C generated at 5 kV/cm,

5 Hz (Fig. 1(a)) and 17.5 kV/cm, 5 Hz

(Fig. 1(b)).

102906-2 Viola et al. Appl. Phys. Lett. 105, 102906 (2014)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  138.37.45.171 On: Thu, 28 Apr 2016

08:12:24



it was proposed that it could be related to an electric field-

induced transformation from a weakly polar to polar state.21

The presence of this effect also in the low amplitude regime

here reported, suggests that the transition from weakly polar

to polar order starts in the low field range, and it culminates

at the electric field corresponding to the sharp current peaks

observed in the loops generated at higher electric field ampli-

tude (at 6EF as reported in Ref. 18).

Figure 2 shows that the position of the current broad

peaks in the loops generated at 17.5 kV/cm and 150 �C is in-

dependent from the frequency of the applied field. The I-E

loops at 3, 5, 7, and 10 Hz have been plotted using the left

y-axis, while the I-E loop at 1 Hz is relative to the right

y-axis (Fig. 2). It can be seen that the I-E loops at 1 Hz and

10 Hz have practically the same shape and the current broad

peaks overlap exactly.

Based on in-situ X-ray diffraction experiments, Jo et al.
proposed that in 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 the electric

field-induced transition takes place in two main steps repre-

sented by the alignment of randomly oriented polar nanore-

gions or nanodomains along the external field direction

(step I), and then by the enlargement of those with the conse-

quent establishment of a long-range ferroelectric order upon

a further increase of the applied field (step II).22 Therefore,

the current broad peaks observed in the I-E loops during

electric field loading and unloading (Fig. 1(b)) could be

related to the step I of the electric field-induced transition:22

during electrical loading in the weak field range, polar nano-

regions are forced to develop a short range polar order (at

6ESRF in Fig. 2), while when the electric field is removed

most of the polar regions recover their original configuration

(at 6ESRB in Fig. 2). Current broad peaks can be also spotted

in the low electric field regime of the I-E loops at 200 �C of

Bi0.5Na0.5TiO3-BaTiO3 doped with manganese,23 suggesting

that step I is common to several the BNT-based ceramics,

but the correspondent current broad peaks are probably

observable only when they do not get swamped in the back-

ground of the current signal.

The constancy of the shape and the position of the

current broad peaks in the I-E loops generated at different

frequency (Fig. 2) suggests that the underlying process is

not thermally assisted within the amplitude and frequency

range investigated, but it is triggered once the electric field

reaches a critical value (note the absence of current broad

peaks at 150 �C under 5 kV/cm amplitude in Fig. 1(a)),

regardless of the frequency at which it is applied. The inde-

pendence on the frequency may also originate from the

recoverable character of the underlying mechanism, which

is also responsible for the reduced hysteresis of the P-E

loops with increasing temperature (Fig. 1). Reversible proc-

esses are anhysteretic and rate independent (i.e., elastic

deformations do not present dependence on the rate of the

applied stress). The underlying process is, however, not

entirely recoverable, as proved by the following experimen-

tal test. A virgin sample was heated at 150 �C and it was

subjected to an electric field waveform with 17.5 kV/cm

amplitude and 5 Hz frequency; after the test the sample was

cooled at room temperature where it showed a d33¼ 1.1

pC/N, meaning that a tiny residual polar state remained af-

ter removing the electrical loading. This could be responsi-

ble for the small hysteresis observed in the P-E loop at

T¼ 150 �C (Fig. 1(b)).

As commonly done in Rayleigh-type analysis, the rela-

tive permittivity e was estimated from the slope of the P-E

loops by linear fitting and plotted as a function of the elec-

tric field amplitude at different frequencies in the tempera-

ture range 23 �C–150 �C (see Fig. 3). A close match with

the permittivity values obtained from the slope of the P-E

loops at 2.5 kV/cm electric field amplitude and those previ-

ously obtained from the impedance spectroscopy measure-

ments in the permittivity-temperature plot18 has been

verified. As the electric field amplitude increases, the esti-

mated permittivity increases because a greater extrinsic

contribution from domain wall movement is produced in

the ferroelectric phase,9,10 and a larger extent of the short

range transition is induced in the weakly polar relaxor

phase. Interestingly, the frequency dispersion of the permit-

tivity at 150 �C is significantly smaller compared with that

observed at lower temperatures (Fig. 3).

In the case of ideal Rayleigh behaviour, the permittivity

increases linearly with increasing electric field amplitude9,10

FIG. 2. I-E loops at 17.5 kV/cm and different frequencies at 150 �C.
FIG. 3. Dielectric permittivity-electric field amplitude at different frequen-

cies in the range 23 �C–150 �C.
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e ¼ einit þ aDE; (1)

where einit is the dielectric permittivity at zero electric field

amplitude DE, and a is a coefficient which describes the

degree of non-linearity of the P-E loop, such that the polar-

ization response as a function of the electric field E during

an electric field cycle of amplitude DE can be written in

terms of the well-known Rayleigh law9,10

P Eð Þ ¼ einit þ aDEð ÞE6
a
2

DE2 � E2ð Þ: (2)

The harmonic analysis of the polarization response generally

allows for a more accurate evaluation of the deviation from

the ideal Rayleigh behaviour compared to a mere polynomial

fitting of the P-E loops and it may provide further informa-

tion on the underlying mechanisms of the non-linear and

hysteretic behaviour in the low electric field amplitude re-

gime. For this purpose, a harmonic analysis of the polariza-

tion (P)-time (t) signals was performed by spectral

decomposition into a Fourier series of harmonic functions.

The polarization signals were expressed as the sum of n
harmonics

PðtÞ ¼ P01 sin ðxtÞ þ P001 cos ðxtÞ þ P02 sin ð2xtÞ

þ P002 cos ð2xtÞ þ P03 sin ð3xtÞ þ P003 cos ð3xtÞ

þ � � � þ P0n sin ðnxtÞ þ P00n cos ðnxtÞ

¼
X1

n¼1;2…

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP0nÞ

2 þ ðP00nÞ
2

q
sinðnxtþ dnÞ; (3)

where x is the angular frequency, P0n and P00n are the in-phase

and out-of-phase amplitudes, and dn ¼ arctanðP
00
n

P0n
Þ is the

phase angle of the nth harmonic.9,24–26 The number of har-

monics, together with their relative amplitudes and phase

angles were determined by a best fit procedure of the polar-

ization signals using Matlab software. The amplitudes and

phase angles of all the harmonics were studied as a function

of the electric field amplitude in the loops generated at 5 Hz

at different temperatures in the range 23 �C–150 �C. The

non-linear behaviour can be still classified as ideal Rayleigh-

type, even when the higher order harmonics are present, as

long as there are only odd harmonics and their phase angles

are equal to 690�. This implies that the non-linear response

given by the high order harmonics is also hysteretic.9,24–26

The coefficients of the Fourier series expansion were

tabulated as a function of electric field amplitude and tem-

perature. For brevity, while still allowing tracking the main

trends in the parameters of the harmonics, only the values

relative to the analysis performed on the polarization signals

obtained at 2.5 kV/cm, 10 kV/cm, and 17.5 kV/cm amplitude

and 5 Hz frequency are reported in Tables 1–3, respectively,

given in the supplementary material.27 In virtue of the so

called half wave symmetry of the P¼P(t) signal (which veri-

fies the property PðxtÞ ¼ �Pðxtþ pÞ),24 the Fourier series

in all of the P¼ P(t) signals reported in Tables 1–327 present

only odd harmonics, inferring the absence of any biased

polarization state as confirmed by PðDEÞ ¼ �Pð�DEÞ in the

loops generated (see Fig. 1). The results of the analysis show

that the number of odd harmonics generally increases with

increasing electric field amplitude and temperature. In the

polarization signals relative to the loops generated at 2.5 kV/cm

amplitude, only the first order harmonic is present in the

entire temperature range (Table 1).27 At 10 kV/cm ampli-

tude, a larger number of harmonics was needed to fit the

polarization signals (Table 2),27 which further increased in

the case of 17.5 kV/cm amplitude (Table 3).27 The coeffi-

cients of the high order harmonics are often too small to pro-

vide accurate phase angles to identify the onset of the

departure from the ideal Rayleigh behaviour. This is also due

to tiny deviations of the applied alternating electric field

from the pure sine waveform, which were detected from a

harmonic analysis performed on the signal E¼E(t). We

observed that the phase angles of the high order harmonics

are not sufficiently reliable when the parameters P0 and P00 of

the high order harmonics are smaller than 60.0005 C/m2

(see values in italic font in the Tables27). Since from the

phase angles of the high order harmonics, it was hard to

identify the electric field amplitude and temperature where

the material starts to deviate from the ideal Rayleigh

response, the deviations were also examined by fitting the

P-E loops with the Rayleigh law in Eq. (2) (plots not shown

here). It was concluded that until 75 �C the non-linear behav-

iour is dominated by a Rayleigh-type response in the entire

range of electric field amplitudes considered. As the temper-

ature is increased, the behaviour increasingly deviates from

the Rayleigh-type and at 150 �C under 17.5 kV/cm ampli-

tude, it seems clear that the material does not follow a

Rayleigh-type dynamics, showing constricted polarization-

electric field loops with reduced hysteresis. The parameters

P3
0 and P5

0 at 150 �C are both bigger than 0.0005 (Table 3

supplemental material27) which ensures that the phase angles

of the third and fifth harmonics are definitely different from

690�, confirming the presence of a non-Rayleigh regime.

The constricted P-E loop observed at 150 �C (see Fig. 1) can

be associated with the progressive stability of a weakly polar

state with increasing temperature in absence of an applied

electric field (remnant polarization tending to zero), well

documented in bismuth-based perovskites.28,29

The temperature dependence of the coefficients in the

first harmonic is plotted in Fig. 4 from 7.5 kV/cm onwards,

where all the coefficients are higher than 60.0005. It can be

seen that the coefficient P1
0 shows a peak at 125 �C at all the

amplitudes considered (Fig. 4(a)). This corresponds to the

transition temperature TF-R from the ferroelectric to the er-

godic relaxor weakly polar phase since it coincides with the

temperature where the derivative of the permittivity with

respect to temperature shows a maximum (see definition of

TF-R in Ref. 22). This was obtained from the permittivity

data previously published18 and the plots are not shown here.

The P1
00 and d1 (Figs. 4(b) and 4(c)) values are related to the

hysteresis area of the P-E loops. Both parameters increase

with increasing electric field amplitude as expected. Their

temperature dependence is characterized by an initial

increase and by a subsequent decrease after a peak with

increasing temperature, consistent with the temperature de-

pendence of the dielectric loss previously reported.18

Since the current broad peaks can be attributed to the

establishment of an electric field-induced short range polar

state (step I), the sharper current peaks found at 6EF
18

should therefore correspond to the formation of a long range

102906-4 Viola et al. Appl. Phys. Lett. 105, 102906 (2014)
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polar order by the growth and percolation of polar regions

(locally induced during step I) through the movement of their

boundaries (step II), which is a thermally activated process.

This would justify the frequency dispersion of the character-

istic electric field thresholds previously reported in other

BNT-based systems.21,30 Percolation of polar nanoregions

during electrical loading were also recently found in barium

zirconate titanate,31 suggesting that the mechanisms of elec-

tric field induced transitions in different relaxor-like materi-

als share similar features.

In conclusion, the non-linear behaviour in the ferroelec-

tric phase of 0.95[0.94(Bi0.5Na(0.45)Li0.05)TiO3-0.06BaTiO3]-

0.05CaTiO3 is dominated by Rayleigh-like features. The

non-linear behaviour increasingly deviates from the Rayleigh-

type response with increasing temperature. In the weakly

polar relaxor state, the characteristic non-linear polarization-

electric field response is attributed to the occurrence of an

electric field-induced transition which starts taking place in

the low electric field amplitude regime, with the establishment

of a short range polar state. The process is mainly recoverable

as indicated by a remnant polarization close to zero and a nar-

row P-E loop hysteresis loop, and it is not thermally activated

as suggested by the absence of frequency dispersion in

current-polarization-electric field loops within the range of

electric field amplitudes and frequencies studied. It is

expected that the described mechanisms are common in dif-

ferent Bi0.5Na0.5TiO3-based perovskites and in other systems

experiencing electric-field induced transitions.
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