5,098 research outputs found

    Avalanche breakdown characteristics of Al1-xGaxAs0.56Sb0.44 quaternary alloys

    Get PDF
    Avalanche breakdown characteristics are essential for designing avalanche photodiodes. In this work, we investigated the effects of adding Ga to Al1-xGaxAs0.56Sb0.44 quaternary alloys. Using p-i-n diodes with a 100 nm i –region and alloy composition ranging from x = 0 to 0.15, we found that the bandgap energy of Al1-xGaxAs0.56Sb0.44 reduces from 1.64 to 1.56 eV. The corresponding avalanche breakdown voltage decreases from 13.02 to 12.05 V, giving a reduction of 64.7 mV for every percent addition of Ga. The surface leakage current was also found to be significantly lower in the diodes with x = 0.10 and 0.15 suggesting that Ga can be added to reduce the surface leakage current while still preserving the lattice match to InP substrate

    High-Gain InAs Planar Avalanche Photodiodes

    Get PDF
    We report the fabrication of InAs planar avalanche photodiodes (APDs) using Be ion implantation. The planar APDs have a low background doping of 2times1014rmcm32 times 10^{14} {rm cm}^{-3} and large depletion widths approaching 8 μm. The thick depletion width enabled a gain of 330 to be achieved at −26 V at 200 K without inducing a significant tunneling current. No edge breakdown was observed within the APDs. The surface leakage current was found to be low with a gain normalized dark current density of 400 μAcm−2 at −20 V at 200 K

    The Cell Biology of the Retinal Pigment Epithelium

    Get PDF
    The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease. © 2020 Elsevier Lt

    Tertiary-Treated Municipal Wastewater is a Significant Point Source of Antibiotic Resistance Genes Into Duluth-Superior Harbor

    Get PDF
    In this study, the impact of tertiary-treated municipal wastewater on the quantity of several antibiotic resistance determinants in Duluth-Superior Harbor was investigated by collecting surface water and sediment samples from 13 locations in Duluth-Superior Harbor, the St. Louis River, and Lake Superior. Quantitative PCR (qPCR) was used to target three different genes encoding resistance to tetracycline (tet(A), tet(X), and tet(W)), the gene encoding the integrase of class 1 integrons (intI1), and total bacterial abundance (16S rRNA genes) as well as total and human fecal contamination levels (16S rRNA genes specific to the genus Bacteroides). The quantities of tet(A), tet(X), tet(W), intI1, total Bacteroides, and human-specific Bacteroides were typically 20-fold higher in the tertiary-treated wastewater than in nearby surface water samples. In contrast, the quantities of these genes in the St. Louis River and Lake Superior were typically below detection. Analysis of sequences of tet(W) gene fragments from four different samples collected throughout the study site supported the conclusion that tertiary-treated municipal wastewater is a point source of resistance genes into Duluth-Superior Harbor. This study demonstrates that the discharge of exceptionally treated municipal wastewater can have a statistically significant effect on the quantities of antibiotic resistance genes in otherwise pristine surface waters

    Black holes in three dimensional higher spin gravity: A review

    Full text link
    We review recent progress in the construction of black holes in three dimensional higher spin gravity theories. Starting from spin-3 gravity and working our way toward the theory of an infinite tower of higher spins coupled to matter, we show how to harness higher spin gauge invariance to consistently generalize familiar notions of black holes. We review the construction of black holes with conserved higher spin charges and the computation of their partition functions to leading asymptotic order. In view of the AdS/CFT correspondence as applied to certain vector-like conformal field theories with extended conformal symmetry, we successfully compare to CFT calculations in a generalized Cardy regime. A brief recollection of pertinent aspects of ordinary gravity is also given.Comment: 49 pages, harvmac, invited contribution to J. Phys. A special volume on "Higher Spin Theories and AdS/CFT" edited by M. R. Gaberdiel and M. Vasilie

    Clinical actionability of comprehensive genomic profiling for management of rare or refractory cancers

    Get PDF
    Background. The frequency with which targeted tumor sequencing results will lead to implemented change in care is unclear. Prospective assessment of the feasibility and limitations of using genomic sequencing is critically important. Methods. A prospective clinical study was conducted on 100 patients with diverse-histology, rare, or poor-prognosis cancers to evaluate the clinical actionability of a Clinical Laboratory Improvement Amendments (CLIA)-certified, comprehensive genomic profiling assay (FoundationOne), using formalin-fixed, paraffin-embedded tumors. The primary objectives were to assess utility, feasibility, and limitations of genomic sequencing for genomically guided therapy or other clinical purpose in the setting of a multidisciplinary molecular tumor board. Results. Of the tumors from the 92 patients with sufficient tissue, 88 (96%) had at least one genomic alteration (average 3.6, range 0–10). Commonly altered pathways included p53 (46%), RAS/RAF/MAPK (rat sarcoma; rapidly accelerated fibrosarcoma; mitogen-activated protein kinase) (45%), receptor tyrosine kinases/ligand (44%), PI3K/AKT/mTOR (phosphatidylinositol-4,5-bisphosphate 3-kinase; protein kinase B; mammalian target of rapamycin) (35%), transcription factors/regulators (31%), and cell cycle regulators (30%). Many low frequency but potentially actionable alterations were identified in diverse histologies. Use of comprehensive profiling led to implementable clinical action in 35% of tumors with genomic alterations, including genomically guided therapy, diagnostic modification, and trigger for germline genetic testing. Conclusion. Use of targeted next-generation sequencing in the setting of an institutional molecular tumor board led to implementable clinical action in more than one third of patients with rare and poor-prognosis cancers. Major barriers to implementation of genomically guided therapy were clinical status of the patient and drug access. Early and serial sequencing in the clinical course and expanded access to genomically guided early-phase clinical trials and targeted agents may increase actionability. Implications for Practice: Identification of key factors that facilitate use of genomic tumor testing results and implementation of genomically guided therapy may lead to enhanced benefit for patients with rare or difficult to treat cancers. Clinical use of a targeted next-generation sequencing assay in the setting of an institutional molecular tumor board led to implementable clinical action in over one third of patients with rare and poor prognosis cancers. The major barriers to implementation of genomically guided therapy were clinical status of the patient and drug access both on trial and off label. Approaches to increase actionability include early and serial sequencing in the clinical course and expanded access to genomically guided early phase clinical trials and targeted agents

    Suppression of HBV by Tenofovir in HBV/HIV coinfected patients : a systematic review and meta-analysis

    Get PDF
    Background: Hepatitis B coinfection is common in HIV-positive individuals and as antiretroviral therapy has made death due to AIDS less common, hepatitis has become increasingly important. Several drugs are available to treat hepatitis B. The most potent and the one with the lowest risk of resistance appears to be tenofovir (TDF). However there are several questions that remain unanswered regarding the use of TDF, including the proportion of patients that achieves suppression of HBV viral load and over what time, whether suppression is durable and whether prior treatment with other HBV-active drugs such as lamivudine, compromises the efficacy of TDF due to possible selection of resistant HBV strains. Methods: A systematic review and meta-analysis following PRISMA guidelines and using multilevel mixed effects logistic regression, stratified by prior and/or concomitant use of lamivudine and/or emtricitabine. Results: Data was available from 23 studies including 550 HBV/HIV coinfected patients treated with TDF. Follow up was for up to seven years but to ensure sufficient power the data analyses were limited to three years. The overall proportion achieving suppression of HBV replication was 57.4%, 79.0% and 85.6% at one, two and three years, respectively. No effect of prior or concomitant 3TC/FTC was shown. Virological rebound on TDF treatment was rare. Interpretation: TDF suppresses HBV to undetectable levels in the majority of HBV/HIV coinfected patients with the proportion fully suppressed continuing to increase during continuous treatment. Prior treatment with 3TC/FTC does not compromise efficacy of TDF treatment. The use of combination treatment with 3TC/FTC offers no significant benefit over TDF alone

    Minimal Model Holography

    Full text link
    We review the duality relating 2d W_N minimal model CFTs, in a large N 't Hooft like limit, to higher spin gravitational theories on AdS_3.Comment: 54 pages, 1 figure; Contribution to J. Phys. A special volume on "Higher Spin Theories and AdS/CFT" edited by M. R. Gaberdiel and M. Vasiliev. v2. minor change

    The KELT Follow-Up Network And Transit False-Positive Catalog: Pre-Vetted False Positives For TESS

    Get PDF
    The Kilodegree Extremely Little Telescope (KELT) project has been conducting a photometric survey of transiting planets orbiting bright stars for over 10 years. The KELT images have a pixel scale of ~23\u27\u27 pixel⁻¹—very similar to that of NASA\u27s Transiting Exoplanet Survey Satellite (TESS)—as well as a large point-spread function, and the KELT reduction pipeline uses a weighted photometric aperture with radius 3\u27. At this angular scale, multiple stars are typically blended in the photometric apertures. In order to identify false positives and confirm transiting exoplanets, we have assembled a follow-up network (KELT-FUN) to conduct imaging with spatial resolution, cadence, and photometric precision higher than the KELT telescopes, as well as spectroscopic observations of the candidate host stars. The KELT-FUN team has followed-up over 1600 planet candidates since 2011, resulting in more than 20 planet discoveries. Excluding ~450 false alarms of non-astrophysical origin (i.e., instrumental noise or systematics), we present an all-sky catalog of the 1128 bright stars (6 \u3c V \u3c 13) that show transit-like features in the KELT light curves, but which were subsequently determined to be astrophysical false positives (FPs) after photometric and/or spectroscopic follow-up observations. The KELT-FUN team continues to pursue KELT and other planet candidates and will eventually follow up certain classes of TESS candidates. The KELT FP catalog will help minimize the duplication of follow-up observations by current and future transit surveys such as TESS
    corecore