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Abstract 

 

In this study, the impact of tertiary-treated municipal wastewater on the 

quantity of several antibiotic resistance determinants in Duluth-Superior 

Harbor was investigated by collecting surface water and sediment samples 

from 13 locations in Duluth-Superior Harbor, the St. Louis River, and Lake 

Superior. Quantitative PCR (qPCR) was used to target three different genes 

encoding resistance to tetracycline (tet(A), tet(X), and tet(W)), the gene 

encoding the integrase of class 1 integrons (intI1), and total bacterial 

abundance (16S rRNA genes) as well as total and human fecal contamination 

levels (16S rRNA genes specific to the genus Bacteroides). The quantities of 

tet(A), tet(X), tet(W), intI1, total Bacteroides, and human-specific 

Bacteroides were typically 20-fold higher in the tertiary-treated wastewater 

than in nearby surface water samples. In contrast, the quantities of these 

genes in the St. Louis River and Lake Superior were typically below detection. 

Analysis of sequences of tet(W) gene fragments from four different samples 

http://dx.doi.org/10.1021/es202775r
http://epublications.marquette.edu/
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collected throughout the study site supported the conclusion that tertiary-

treated municipal wastewater is a point source of resistance genes into 

Duluth-Superior Harbor. This study demonstrates that the discharge of 

exceptionally treated municipal wastewater can have a statistically significant 

effect on the quantities of antibiotic resistance genes in otherwise pristine 
surface waters. 

Introduction 

Over the past several decades, antibiotic-resistant bacterial 

infections have become increasingly prevalent, increasing morbidity 

and mortality as well as the cost of treatment.1-3 In response to these 

clinical concerns, there has been increasing focus on environmental 

reservoirs of antibiotic resistance over the past several years.4-8 

Antibiotic use in agriculture, for example, has been heavily 

scrutinized9,10 and recently banned in the European Union. In contrast, 

the role of treated municipal wastewater has received relatively little 

attention as a reservoir of resistance, in spite of numerous reports 

suggesting that bacteria resistant to multiple antibiotics11-13 and 

antibiotic resistance genes14-21 are abundant in municipal wastewater. 

 

Determining the relative importance of treated municipal 

wastewater as a reservoir of antibiotic resistance is a potentially 

difficult task. The first challenge is to enumerate “antibiotic resistance” 

in some meaningful way. Historically, antibiotic resistance would have 

been quantified by cultivating bacteria based on their phenotypic 

resistance to a specific antibiotic or set of antibiotics. This approach, 

however, is insufficient because cultivation-based methods are well-

known to underestimate the quantities and diversity of bacteria.22,23 

The second challenge is to distinguish the impact of treated municipal 

wastewater from the background level of resistance because antibiotic 

resistant bacteria and antibiotic resistance genes are natural 

phenomena5,24 and because other human activities (i.e., other than the 

release of municipal wastewater) have presumably perturbed the 

majority of surface waters to some extent. 

 

In this study, we examined the impact of tertiary-treated 

municipal wastewater on the quantities of three tetracycline resistance 

genes (tet(A), tet(X), and tet(W)) and the integrase gene of class 1 

integrons (intI1) in the St. Louis River, Duluth-Superior Harbor, and 

Lake Superior. This ecosystem represents an ideal locale for studying 

http://dx.doi.org/10.1021/es202775r
http://epublications.marquette.edu/
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the importance of treated municipal wastewater as a reservoir of 

antibiotic resistance because the St. Louis River and Lake Superior are 

surprisingly pristine surface waters with very low background levels of 

bacteria,25 which suggests that the levels of antibiotic resistant 

bacteria also should be very low. Furthermore, the quality of treatment 

at the Western Lake Superior Sanitary District (WLSSD), which 

operates the municipal wastewater treatment facility in Duluth, MN, is 

exemplary. The WLSSD facility treats approximately 40 million gallons 

of residential, commercial, and industrial wastewater each day via a 

conventional system consisting of bar screens, grit removal, and a 

state-of-the-art, high-purity oxygen activated sludge process. The 

WLSSD wastewater treatment facility, however, is unique in that it 

further treats the wastewater by passing it through a mixed media 

filter (consisting of anthracite coal, silica sand, and garnet) before 

disinfecting (using sodium hypochlorite) the wastewater and 

discharging it to Duluth-Superior Harbor. 

Materials and Methods 

Sample Collection 
 

Surface water (sample volume = 250 mL) and sediment 

(sample mass = ∼0.75 g wet sediment) samples were collected on 

October 1, 2010 from the St. Louis River, Duluth-Superior Harbor, and 

Lake Superior while aboard the R/V Blue Heron (Figure 1). Most of the 

surface water samples were collected manually at a distance of 0.5 m 

below the water surface using sterile polystyrene bottles. A small 

fraction of the samples (those from Lake Superior) were collected 

using an SBE 32 Carousel Water Sampler (Sea-Bird Electronics, Inc., 

Bellevue, WA) at a depth of 5 m below the water surface. Sediment 

samples were collected using either a multicorer (Ocean Instruments, 

San Diego, CA) or a gravity-corer (HTH Teknik; Luleå, Sweden). 

Sediment samples represent a composite sample of the top 2.5 cm of 

sediment. 

http://dx.doi.org/10.1021/es202775r
http://epublications.marquette.edu/
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Figure 1. Map of the St. Louis River, Duluth-Superior Harbor, and Lake 
Superior, identifying the locations from which samples were collected. 

As soon as possible after collection (typically less than 30 min; 

always less than 2 h), surface water samples were passed through a 

47 mm diameter nitrocellulose filter (pore size = 0.22 μm) to 

concentrate microbial biomass. Filters were then immersed in 0.5 mL 

of lysis buffer (120 mM phosphate buffer, pH = 8.0, 5% sodium 

dodecyl sulfate) to preserve the sample until genomic DNA could be 

extracted and purified. All samples were stored on ice while they were 

transported to the University of Minnesota (within 12 h), after which 

they were stored at −20 °C until processed further. 

 

Genomic DNA Extraction 
 

Water samples (preserved in lysis buffer) underwent three 

consecutive freeze–thaw cycles and an incubation of 90 min at 70 °C 

to lyse cells. Genomic DNA was then extracted and purified from these 

samples using the FastDNA Spin Kit (MP Biomedicals, Solon, OH) 

according to manufacturer’s instructions. Genomic DNA was also 

extracted from sediment samples (∼500 mg of wet weight per sample) 

using a bead beater to lyse cells. Genomic DNA was then extracted 

and purified from sediment samples using a FastDNA Spin Kit for soil 

(MP Biomedicals, Solon, OH). All genomic DNA extractions were 

performed in triplicate and stored at −20 °C until needed. 

http://dx.doi.org/10.1021/es202775r
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Environmental Science & Technology, Vol 45, No. 22 (2011): pg. 9543-9549. DOI. This article is © American Chemical 
Society and permission has been granted for this version to appear in e-Publications@Marquette. American Chemical 
Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from American Chemical Society. 

6 

 

Community Analysis 
 

The composition of the bacterial communities in the aquatic 

samples was compared by automated ribosomal intergenic spacer 

analysis (ARISA). The ribosomal intergenic spacer (ITS) regions of 

Bacteria were amplified using primers ITSF (5′-GTC GTA ACA AGG TAG 

CCG TA-3′) and ITSReub (5′-GCC AAG GCA TCC ACC-3′)26 as 

described previously.27 Fragment analysis was performed by 

denaturing capillary electrophoresis at the Biomedical Genomics Center 

at the University of Minnesota using an ABI 3130xl Genetic Analyzer 

(Applied Biosystems, Foster City, CA). The length of the fragments was 

estimated using the Map Marker 1000 size standard. 

 

Quantitative PCR 
 

Quantitative real-time PCR (qPCR) was used to quantify the 

presence of three genes encoding tetracycline resistance (tet(A), 

tet(W), and tet(X)) and the integrase gene of class 1 integrons (intI1) 

as described previously.15 These genes were targeted in this study 

because our prior work demonstrated that these genes were easily 

detectable in untreated wastewater solids15,16 and because these genes 

encode proteins that confer tetracycline resistance via each of the 

three known mechanisms of resistance.28 qPCR was also used to 

quantify the 16S rRNA genes of all members of the domain Bacteria as 

well as total and human-specific Bacteroides spp. as described 

previously.29-31 

 

The qPCR analysis was conducted using an Eppendorf 

Mastercycler ep realplex thermal cycler (Eppendorf, Westbury, NY) or 

an ABI Prism7000 Sequence Detection System (Applied Biosystems). 

Each qPCR run consisted of initial denaturation for 10 min at 95 °C, 

followed by 40 cycles of denaturation at 95 °C for 15 s, and anneal 

and extension at 60 °C (most targets) or at 56 °C (human-specific 

Bacteroides) for 1 min. A 25 μL reaction mixture contained 12.5 μL of 

iTaq SYBR Green Supermix with ROX (Bio-Rad, Hercules, CA), 25 μg 

bovine serum albumin (Roche Applied Science, Indianapolis, IN), 

optimized quantities of forward and reverse primers, and a specified 

volume of template DNA (usually 0.5 μL). The precise volume and 

concentration of template DNA were empirically optimized for each 

http://dx.doi.org/10.1021/es202775r
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sample to generate the lowest detection limit while minimizing 

inhibition of PCR. Additional information on the qPCR primers, their 

quantification limits, and their associated products are provided in the 

Supporting Information. 

 

The quantity of target DNA in unknown samples was calculated 

based on a standard curve generated using known quantities of 

template DNA. Standards for qPCR were prepared by PCR amplification 

of genes from positive controls, followed by ligation into a cloning 

vector (either the StrataClone PCR kit (Stratagene, Santa Clara, CA) or 

pGEM-T Easy (Promega, Madison, WI)), and transformation into E. coli 

JM109. Plasmids were purified using the alkaline lysis procedure.32 

Plasmid DNA was quantified by staining with Hoechst 33258 dye and 

measured on a TD-700 fluorometer (Turner Designs, Sunnyvale, CA) 

using calf thymus as a DNA standard. Tenfold serial dilutions of 

plasmid DNA were prepared and run on the thermal cycler to generate 

standard curves (r2 > 0.99). Following qPCR, melting curves were 

generated and analyzed to verify that nonspecific amplification did not 

occur. 

 

Clone Libraries 
 

Fragments of tet(W) genes from four different surface water 

samples (samples SLR5, DH2, WW, and LS2) were amplified by PCR, 

purified, ligated into the pGEM-T Easy cloning vector, transformed into 

Escherichia coli JM109, and plated onto LB agar plates supplemented 

with 40 μg/mL of ampicillin. This resulted in libraries of tet(W) gene 

fragments from each of these samples, allowing their nucleotide 

sequences to be determined. Approximately 30 colonies from each 

library were randomly picked so that plasmids could be extracted and 

purified using the alkaline lysis method. Extracted plasmids were then 

used as template for nucleotide sequence analysis using M13F and 

M13R as sequencing primers. Bidirectional sequence information was 

then used to produce a consensus sequence. Approximately 20% of 

the plasmids contained primer–dimer rather than a genuine tet(W) 

gene fragment; these sequences were excluded from further analysis. 

 

  

http://dx.doi.org/10.1021/es202775r
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/es202775r#notes-1
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Data Analysis 
Nonmetric multidimensional scaling (nMDS) was used on 

triplicate ARISA profiles to evaluate differences in bacterial community 

composition based on the presence and intensity of peaks in the 

electropherograms. The relative intensity of peaks, obtained by 

dividing the individual intensities by total intensity of all the peaks, 

was used in the analysis. Peaks falling below 1% of the total intensity 

were excluded from the analysis. nMDS was performed using the ade4 

package in R, version 2.4.1.33 

 

Prior to statistical analysis, samples with gene concentrations 

below the method detection limit were assigned a value equal to half 

the detection limit. All gene concentrations were then log-transformed, 

and this log-transformed data set was used for all subsequent 

statistical analysis. One-way analysis of variance (ANOVA) was 

performed with R version 2.12.0 for all gene targets. An F-test was 

conducted to determine if results from a specific surface water sample 

location exhibited gene concentrations that were significantly different 

from results at the other sample locations. Tukey’s honestly significant 

difference (HSD) test was conducted for each gene target to determine 

the difference in mean gene concentrations between each possible pair 

of surface water samples sites. Pearson correlation coefficients of gene 

concentrations were also calculated using R version 2.12.0 for all 

possible pairs of gene targets. The detailed results of all statistical 

analyses (i.e., P values and/or Pearson correlation coefficients) are 

provided in the Supporting Information. 

 

All nucleotide sequences were initially compared with sequences 

in the GenBank database34 to verify that the cloned fragments were 

genuine tet(W) gene fragments. Sequences were then aligned using 

the ClustalW algorithm35 using DNAMan version 7.0 software (Lynnon 

Biosoft, Vaudreuil-Dorion, Quebec, Canada). To avoid artifacts 

stemming from misamplification during PCR and nucleotide sequencing 

error,36 all sequences for which there was not a replicate were 

excluded from further analysis. 

  

http://dx.doi.org/10.1021/es202775r
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Results 

Bacterial Community Composition 
 

The composition of the bacterial communities in surface water 

samples collected along a length of the St. Louis River, Duluth-

Superior Harbor, and Lake Superior was assayed by automated 

ribosomal intergenic spacer analysis (ARISA) (Figure 2). The bacterial 

community composition gradually transitioned along the length of the 

St. Louis River, into Duluth-Superior Harbor, and out into Lake 

Superior. In contrast, the composition of bacteria in the treated 

municipal wastewater from the Western Lake Superior Sanitary District 

(WLSSD) was significantly different than all of the surface water 

samples. 

 

 
Figure 2. Results of nonmetric multidimensional scaling (nMDS) analysis of bacterial 
community composition as determined by automated ribosomal intergenic spacer 
analysis. Ellipses show the 95% confidence limit of triplicate water samples. Samples 
were collected from the St. Louis River (identified as “SLR”), Duluth-Superior Harbor 

(identified as “DH”), and Lake Superior (identified as “LS”); the precise locations from 
which samples were collected are shown in Figure 1. 

Quantitative PCR 
 

The amount of bacterial biomass was quantified in the surface 

water samples by real-time PCR of 16S rRNA gene fragments (Figure 

http://dx.doi.org/10.1021/es202775r
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/es202775r#fig2
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3). Bacterial biomass in the different surface water samples varied 

substantially from as high as 3.6 × 106 gene copies per mL (sample 

location = SLR2) to as low as 2.1 × 105 gene copies per mL (sample 

location = LS2). These quantifications of 16S rRNA gene copies are 

substantially lower than that previously reported from the Haihe River 

in China (108–109 copies per mL)37 and from a drinking water source in 

Michigan (3.4 × 109 copies per mL),38 but are consistent with 

previously reported direct cell counts from Lake Superior (1 × 105 

cells/mL).25 The quantity of bacterial biomass in the treated WLSSD 

effluent was 5.4 × 106 gene copies per mL, which was higher than any 

surface water sample. 

 

 
Figure 3. Quantities (gene copies per mL) of 16S rRNA genes in water samples 
collected from the St. Louis River, Duluth-Superior Harbor, the outfall from the 
Western Lake Superior Sanitary District, and Lake Superior. Values shown are the 

arithmetic means; error bars show the standard deviation of the mean. The locations 
from which samples were collected are shown in Figure 1. 

The quantities of three different genes that encode resistance to 

tetracycline (tet(A), tet(X), and tet(W)) as well as the quantity of the 

integrase gene (intI1) of class 1 integrons were also determined along 

the St. Louis River, in Duluth-Superior Harbor, and in Lake Superior 

(Figure 4; for the same data normalized to 16S rRNA genes, see 

Supporting Information). The quantities of tet(A) and tet(X) followed 

similar patterns in the aquatic samples; both of these genes were at 

relatively high concentrations in the WLSSD effluent (tet(A): 6.3 × 102 

copies per mL; tet(X): 1.2 × 103 copies per mL), slightly above the 

detection limit at several locations within Duluth-Superior Harbor, and 

below the detection limit in the St. Louis River and in Lake Superior. 

The pattern of intI1 genes was somewhat similar to that observed with 

tet(A) and tet(X), except that a more distinct hump-shaped profile, 

albeit slightly skewed into Duluth-Superior Harbor, was observed; this 

http://dx.doi.org/10.1021/es202775r
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/es202775r#fig3
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/es202775r#fig1
http://pubs.acs.org/doi/full/10.1021/es202775r#fig4
http://pubs.acs.org/doi/full/10.1021/es202775r#notes-1
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hump-shaped profile began in the St. Louis River and encompassed all 

but one sample collected from Duluth-Superior Harbor. An entirely 

different profile was observed with respect to the quantity of tet(W) 

genes, which were quantifiable in every aquatic sample with only the 

WLSSD effluent (1.8 × 104 gene copies per mL) and one sample from 

Duluth-Superior Harbor (sample DH4: 5.3 × 103 gene copies per mL) 

being statistically greater (P < 0.05) than the other samples. Because 

the quantities of 16S rRNA genes were relatively constant among the 

different water samples (i.e., within an order of magnitude), the 

quantities of tet(A), tet(X), tet(W), and intI1 normalized to 16S rRNA 

genes follow similar patterns to those described above (see Supporting 

Information for more details). 

 

 
Figure 4. Quantities (gene copies per mL of water) of tet(A), tet(W), tet(X), and the 
integrase gene of class 1 integrons (intI1) in samples collected from the St. Louis 

River, Duluth-Superior Harbor, the outfall from the Western Lake Superior Sanitary 
District, and Lake Superior. Values shown are the arithmetic means; error bars show 
the standard deviation of the mean. The locations from which samples were collected 
are shown in Figure 1. 

The quantities of 16S rRNA genes from all Bacteroides spp. in 

the aquatic samples followed a trend similar to that observed with the 

tet(W) quantities (Figure 5A). The highest quantity of Bacteroides spp. 

was found in the WLSSD effluent (6.8 × 103 gene copies per mL), but 

otherwise most of the samples had relatively low concentrations that 

were similar. In contrast, the quantities of human-specific Bacteriodes 

spp. followed a trend like that of tet(A) and tet(X), in which a 

http://dx.doi.org/10.1021/es202775r
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/es202775r#notes-1
http://pubs.acs.org/doi/full/10.1021/es202775r#notes-1
http://pubs.acs.org/doi/full/10.1021/es202775r#fig1
http://pubs.acs.org/doi/full/10.1021/es202775r#fig5
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relatively high concentration was detected in the WLSSD effluent (1.0 

× 102 gene copies per mL); two samples from Duluth-Superior Harbor 

had quantities slightly higher than the detection limit, but then all 

other samples were below the detection limit. 

 

 
Figure 5. Quantities (gene copies per mL of water) of 16S rRNA genes from all 

Bacteriodes spp. and from human-specific Bacteroides spp. in water samples collected 
from the St. Louis River, Duluth-Superior Harbor, the outfall from the Western Lake 
Superior Sanitary District, and Lake Superior. Values shown are the arithmetic means; 
error bars show the standard deviation of the mean. The locations from which samples 
were collected are shown in Figure 1. 

Four sediment samples were also collected from Duluth-Superior 

Harbor and Lake Superior (Table 1). Each of these samples had similar 

concentrations of total bacteria, as measured by qPCR of 16S rRNA 

genes. The quantities of the other genetic markers tracked in this 

study, however, varied significantly depending on sample location 

(except for human-specific Bacteroides spp., which were not detected 

in any of the sediment samples). The highest concentrations of these 

genetic markers were detected in sediment samples collected from 

near the WLSSD outfall (samples WW and DH1) compared to the 

samples collected from the Duluth-Superior Harbor channel (sample 

DH3) and from Lake Superior (sample LS2). 

 

  

http://dx.doi.org/10.1021/es202775r
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Table 1. Arithmetic Means (Units = gene copies per wet gram of sediment; n 

= 3) of Various Genes Detected in Sediment Samples Collected near the 

WLSSD Outfall, from Duluth-Superior Harbor, and from Lake Superior (See 

Figure 1 for Actual Locations)a 

sample 
location 

all 16S 
rRNA 

all 
Bacteroides 

spp. 

tet(A) tet(X) tet(W) intI1 

WW 1.9 × 
1010(6.5 × 
109) 

6.9 × 104(3.9 × 
104) 

2.1 × 
106(6.8 × 
105) 

2.9 × 
104(5.4 × 
103) 

1.9 × 
104(9.3 × 
103) 

2.4 × 
106(6.6 × 
105) 

DH1 2.1 × 
1010(5.1 × 
109) 

2.3 × 105(1.4 × 
105) 

7.4 × 
105(1.9 × 
105) 

1.2 × 
104(2.3 × 
103) 

6.5 × 
104(3.7 × 
104) 

2.5 × 
106(5.5 × 
105) 

DH3 1.7 × 
1010(5.1 × 
108) 

4.9 × 104(2.8 × 
104) 

3.7 × 
105(6.8 × 
104) 

b.d.b 2.6 × 
104(1.4 × 
104) 

7.7 × 
105(4.3 × 
104) 

LS2 1.9 × 
1010(5.7 × 
109) 

2.3 × 104(3.2 × 
103) 

1.2 × 
105(1.2 × 
104) 

b.d. 1.1 × 
104(4.1 × 
103) 

4.9 × 
105(8.7 × 
104) 

aHuman-specific Bacteroides spp. were also targeted by real-time PCR, but were below 
the quantification limit in all four sample locations. The numbers in parentheses 
represent the standard deviation of the mean. 
bb.d., below detection. 

 

PCR Cloning of tet(W) Gene Fragments 
 

In a previous study, tet(W) gene sequences corresponded to the 

location from which they originated (i.e., from agriculture, from 

municipal wastewater, etc.).39 Nucleotide sequences, therefore, were 

determined from four different clone libraries (from samples SLR5, 

WW, DH2, and LS2) of tet(W) gene fragments to determine whether or 

not the type of tet(W) genes varied in the St. Louis River, Duluth-

Superior Harbor, and Lake Superior. Comparing only nucleotide 

sequences for which a matching nucleotide sequence was detected 

(i.e., singletons were excluded from consideration), only two distinct 

clones were detected. The first of these clone types (100% sequence 

identity to GenBank accession no. GU116971) comprised 100% of the 

clone library from the St. Louis River sample (sample = SLR5; n = 

17), slightly less than half of the clone library from the Duluth-

Superior Harbor sample (sample = DH2; 8 out of 17 clones), and the 

majority of the clones from the Lake Superior sample (sample = LS2; 

17 out of 20 clones). In contrast, the second clone type (100% 

sequence identity to GenBank accession no. AP012212) represented 

100% of the library from the sample collected from the tertiary-

treated wastewater (sample = WW; n = 14), slightly more than half of 

http://dx.doi.org/10.1021/es202775r
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/es202775r#fig1
http://pubs.acs.org/doi/full/10.1021/es202775r#tbl1-fn1
http://pubs.acs.org/doi/full/10.1021/es202775r#t1fn1
javascript:void(0);
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the Duluth-Superior Harbor clone library (9 out of 17 clones), and a 

small fraction of the LS2 library (3 out of 20 clones). 

Discussion 

The importance of municipal wastewater treatment as a 

necessary component of modern society is without question.40,41 The 

primary goal of municipal wastewater treatment is to protect surface 

water quality from the adverse effects of the relatively high 

concentration of nutrients (biodegradable carbon, nitrogen, and 

phosphorus) in the sewage; the secondary goal of municipal 

wastewater treatment is to protect public health from direct exposure 

to pathogens (usually via accidental ingestion of surface water).41 An 

unintended consequence of municipal wastewater treatment, however, 

is the creation of a centralized location where bacteria from the 

microflora of healthy and unhealthy humans coalesce. Municipal 

wastewater and municipal wastewater treatment, therefore, 

simultaneously represent a pertinent reservoir of resistance and a 

potential opportunity to ameliorate this reservoir of resistance, 

respectively. 

 

The present study demonstrates that treated municipal 

wastewater is a statistically significant point source of three 

tetracycline resistance determinants as well as the integrase gene of 

class 1 integrons into Duluth-Superior Harbor. The tertiary-treated 

wastewater had approximately 20-fold higher concentrations of various 

antibiotic resistance determinants than the local background levels in 

the St. Louis River and Lake Superior. Furthermore, the concentrations 

of antibiotic resistance genes generally correlated to either all 

Bacteroides spp. (a measure of total fecal material) or human-specific 

Bacteroides spp. (a measure of human-generated fecal material) (see 

Supporting Information for more details). Finally, the sequence of 

tet(W) gene fragments in tertiary-treated wastewater was unique 

compared to that compared to that found in the St. Louis River and 

Lake Superior, again suggesting that the tertiary-treated municipal 

wastewater was a significant source of antibiotic resistant 

determinants into Duluth-Superior Harbor – where approximately 

equal amounts of these two gene sequences were detected. 

 

http://dx.doi.org/10.1021/es202775r
http://epublications.marquette.edu/
javascript:void(0);
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/es202775r#notes-1
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The present study is unique and novel because of its ability to 

clearly identify tertiary-treated municipal wastewater as a point source 

of antibiotic resistance genes, which have been identified as an 

emerging pollutant of concern.42 Previous studies in which treated 

municipal wastewater was implicated as a source of antibiotic 

resistance determinants were substantially more convoluted because 

multiple sources of antibiotic resistance genes existed, such as 

agricultural activity and industrial wastewater discharges.39,43 In 

contrast, the current study is considerably more straightforward to 

interpret because of the general transition from pristine (St. Louis 

River) to relatively perturbed (Duluth-Superior Harbor) back to pristine 

(Lake Superior), with virtually no known anthropogenic sources of 

antibiotic resistance genes other than a large input of tertiary-treated 

municipal wastewater from WLSSD (flow rate = 40 million gallons per 

day) and a small input of secondary-treated municipal wastewater 

from Superior, Wisconsin (flow rate = 5 million gallons per day; near 

sample location DH4). 

 

In conclusion, municipal wastewater treatment operations need 

to be more carefully considered as an important factor in the global 

ecology of antibiotic resistance. Municipal wastewater contains 

numerous types of waste, of which human fecal material is known to 

have substantial concentrations of both antibiotic resistant bacteria 

and antibiotic resistance genes.44 Municipal wastewater treatment 

operations undoubtedly remove a very large fraction of the antibiotic 

resistance genes in untreated sewage prior to discharging the treated 

effluent. This study demonstrates that even tertiary-treated municipal 

wastewater is a statistically significant source of antibiotic resistance 

genes in otherwise pristine surface waters; additional research is 

needed to determine the importance of treated municipal wastewater 

in the overall proliferation of antibiotic resistance. 
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