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Abstract

The Kilodegree Extremely Little Telescope (KELT) project has been conducting a photometric survey of transiting
planets orbiting bright stars for over 10 years. The KELT images have a pixel scale of ∼23″ pixel−1

—very similar
to that of NASA’s Transiting Exoplanet Survey Satellite (TESS)—as well as a large point-spread function, and the
KELT reduction pipeline uses a weighted photometric aperture with radius 3′. At this angular scale, multiple stars
are typically blended in the photometric apertures. In order to identify false positives and confirm transiting
exoplanets, we have assembled a follow-up network (KELT-FUN) to conduct imaging with spatial resolution,
cadence, and photometric precision higher than the KELT telescopes, as well as spectroscopic observations of the
candidate host stars. The KELT-FUN team has followed-up over 1600 planet candidates since 2011, resulting in
more than 20 planet discoveries. Excluding ∼450 false alarms of non-astrophysical origin (i.e., instrumental noise
or systematics), we present an all-sky catalog of the 1128 bright stars (6<V<13) that show transit-like features
in the KELT light curves, but which were subsequently determined to be astrophysical false positives (FPs) after
photometric and/or spectroscopic follow-up observations. The KELT-FUN team continues to pursue KELT and
other planet candidates and will eventually follow up certain classes of TESS candidates. The KELT FP catalog
will help minimize the duplication of follow-up observations by current and future transit surveys such as TESS.

Key words: methods: observational – techniques: photometric – techniques: spectroscopic – techniques: radial
velocities

Supporting material: machine-readable table

1. Introduction

Wide-field surveys for transiting planets are notoriously
plagued by astrophysical false positives (FPs). These are due to
configurations of stars and/or intrinsic stellar variability that
mimic the signal of a transiting planet, i.e., a shallow (5%)
dip in the apparent brightness of what appears to be a single,
isolated star in the survey data, which repeats periodically and
has approximately the shape and duration expected for a
transiting planet of the observed period. Classification of
various types of FPs has been addressed by a number of papers,
most notably in Brown (2003) and Charbonneau et al. (2004),
but also in Torres et al. (2004), O’Donovan et al. (2006),
Latham et al. (2009), Evans & Sackett (2010), and Sullivan
et al. (2015). One of the most common astrophysical
configurations that can lead to an FP is an eclipsing binary
(EB) star system blended in the wide-field survey images with
one or more additional (typically brighter) stars. All else being

equal, the contamination of flux from nearby stars and blending
of nearby eclipsing binaries (NEBs) in the photometric aperture
becomes progressively worse the larger the pixel scale. Also,
ground-based surveys have limited photometric precision and
thus may not be sensitive enough to detect very shallow
secondary eclipses of hierarchical eclipsing systems or blended
EBs (Bayliss et al. 2017).
Because many transit surveys seek to use wide-field optics to

monitor large numbers of stars at once, their angular resolution
and subsequent pixel scales are typically larger than the sub-
arcsec pixels employed by most optical telescopes, which aim
to critically sample typical ground-based seeing of a few
arcseconds or less. For small-aperture, ground-based transit
surveys, the pixel scales can range from ∼3 7 to ∼36″ pixel−1.
This includes surveys such as TrES (Alonso et al. 2004), XO
(McCullough et al. 2005), SuperWASP (Pollacco et al. 2006),
HATNet (Bakos et al. 2007), KELT (Pepper et al. 2007, 2012),
QES (Alsubai et al. 2011), HATSouth (Bakos et al. 2013),
NGTS (Wheatley et al. 2017), and MASCARA (Talens
et al. 2017). In order to cover a larger area, even space-based
transit searches also employ relatively large pixel scales and

67 Texaco Fellow.
68 NSF GRFP Fellow.
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have angular resolution considerably worse than the theoretical
minimum image size set by the diffraction limit, such as CoRoT
(2 3 pixel−1; Rouan et al. 1998) and Kepler (3 98 pixel−1;
Borucki et al. 2010). In particular, the upcoming Transiting
Exoplanet Survey Satellite (TESS) mission, which will monitor
nearly the entire sky over a period of two years, has pixels that
are 21″ pixel−1 (Ricker et al. 2014), which will be comparable
to or a few times smaller than the angular scale of the point-
spread function (PSF). Because of the combination of the
relatively large size of the PSF and the resulting large
photometric apertures required to sample the PSF, limited
photometric precision of the survey telescopes, and several
astrophysical scenarios that can be confused with transiting
exoplanets (see Section 3), the occurrence rate of astrophysical
FPs in wide-field transit surveys is high. Therefore, transit
candidates must typically be confirmed through extensive
photometric and spectroscopic follow-up observations.

Wide-field transit survey follow-up observations have been
used to confirm planets for more than 20 years. As a result,
thousands of FPs have been identified along with the hundreds
of transiting planets detected from the ground-based surveys
and thousands of transiting planets detected from space-based
surveys. Recently, the EBLM Project began to release the FPs
from that survey that turned out to be single-lined spectroscopic
binaries with low-mass stellar companions (Triaud et al. 2017).
However, most of the FP detections of most surveys have not
been published or otherwise made public. There are likely
many reasons for this, but competition between surveys and the
lack of resources needed to compile and disseminate the
information are likely major underlying issues. The lack of FP
information exchange between surveys has necessarily caused
much duplication of effort in follow-up observation programs
to identify FPs when multiple surveys are searching the same
stars for transiting planets. The upcoming TESS mission will
survey nearly the entire sky for transiting exoplanets, including
large numbers of stars already surveyed by previous wide-field
surveys. Since a large number of FPs have already been
identified in the TESS fields by previous surveys, the
publication of information describing the identified FPs could
significantly reduce the amount of follow-up observations
required for TESS or any other current or future transit survey.
In this paper, we present a comprehensive FP catalog from the
KELT transit survey to help minimize duplication of follow-up
observations for future transit surveys. Furthermore, we present
our follow-up process and demonstrate that photometric
follow-up by facilities of all sizes can significantly alleviate
pressure on more limited spectroscopic resources for future
wide-field transit surveys such as TESS.

2. The KELT Survey and Its Similarity to TESS

The Kilodegree Extremely Little Telescope (KELT; Pepper
et al. 2003, 2007) is a wide-field photometric transit survey
operated by Vanderbilt University, The Ohio State University,
and Lehigh University. The survey is designed to find transits
of extrasolar planets through high-precision (better than ∼1%
rms) photometry of bright stars of magnitudes 8<V<10.
This magnitude range was selected to be fainter than that of
comprehensive radial velocity (RV) surveys that had largely
been vetted for giant transiting planets, but still brighter than
most other transit surveys. The reason for that choice is that
transiting planets with brighter host stars can be more precisely

characterized with fewer follow-up resources, particularly for
studies of exoplanet atmospheres. Performing well beyond the
design of the survey, KELT has detected transit-like events that
warranted follow-up observations of stars of magni-
tude 6<V<13.
KELT consists of two robotic telescopes. KELT-North is

located at Winer Observatory in Sonoita, Arizona, and KELT-
South is located at the South African Astronomical Observa-
tory in Sutherland, South Africa. Having installations in both
hemispheres allows KELT to survey a large proportion of the
entire sky. Each telescope consists of a Mamiya 645 80 mm
f/1.9 lens with a 42 mm aperture, giving a wide field of view of
26°×26°. The lens is mounted in front of a 9 μm 4096×
4096 pixel Apogee CCD camera, giving a pixel scale of
∼23″ pixel−1, which is very close to the TESS pixel scale of
21″ pixel−1. The camera and lens are both mounted on a
Paramount ME robotic mount. A full description of the
telescopes and instrumentation can be found in Pepper et al.
(2003, 2007).
The KELT telescopes have now surveyed more than 70% of

the sky and have discovered transiting planets with transit
depths as shallow as ∼0.25% (Pepper et al. 2017). Figure 1
shows the location of all defined KELT fields (outlined with
orange lines) and 26 representative TESS sectors starting near
the ecliptic and overlapping at the ecliptic poles (outlined with
purple lines). The TESS sector labeled TSS1 represents the
actual pointing of TESS Southern Sector 1. The other Sectors
are placed relative to Sector 1, and the positions are subject to
change. The regions where KELT fields overlap representative
TESS sectors appear in green. The regions of TESS fields with
no KELT overlap appear in light blue.
The PSFs of the KELT cameras result in substantial blending

of targets with neighboring stars, including blended NEBs that
can masquerade as transiting exoplanets in the KELT photo-
metry as noted above. Also, the limited KELT photometric
precision and the various astrophysical FP scenarios described
in Section 3 cause confusion between transiting exoplanets and
FPs. In order to identify FPs and distinguish them from bona
fide transiting exoplanets, the KELT project collaborates with a
large network of photometric and spectroscopic follow-up
observers. The photometric observations are conducted with
telescopes and imaging cameras that provide higher spatial
resolution, cadence, and photometric precision than the KELT
telescopes. The spectroscopic observations provide candidate
host star spectroscopic parameters and RV measurements of
varying precision. Since ground-based photometry has relative
photometric precision limited to the order of a millimagnitude,
putative secondary eclipses occurring in hierarchical eclipsing
systems and blended EBs may not be detected in either the
KELT light curves or follow-up light curves (Bayliss et al.
2017). We describe spectroscopic and photometric techniques
to identify these FPs in Section 3.

2.1. Transit Identification

The KELT survey identifies, pursues, and validates transiting
exoplanet candidates in stages. First, light curves produced by
the survey are searched for transit signals and are then
subjected to various statistical cuts. All candidates that pass
these automated cuts are then manually vetted by the KELT
Science Team. This manually selected subset is then pursued
with follow-up observations. It is through these follow-up
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observations that we identify and categorize the FPs that are the
subject of this paper.

2.1.1. Automated Detection of Transit Candidates

The KELT-North and KELT-South data reduction pipelines
and the process of identification of transit candidates are
described in Siverd et al. (2012) and Kuhn et al. (2016),
respectively. A short summary is provided here. KELT uses an
image subtraction pipeline based on the ISIS software (Alard &
Lupton 1998; Alard 2000), but with extensive modifications.
KELT fields are reduced once every one to three years as new
data are acquired, and light curves are produced for all sources
identified in the images. The source list is then cross-matched
against the Tycho (Høg et al. 2000) and UCAC4 (Zacharias
et al. 2013) catalogs. We then use a reduced proper motion
(RPM) cut (Gould & Morgan 2003; Collier Cameron et al.
2007) to identify and remove giant stars before conducting
the search for transit signals. However, that process is not
perfect—some giant stars have especially large proper motions
or are incorrectly measured in proper motion catalogs, and thus
some giants make it through the RPM cut. A search is then
performed on the light curves of all the stars that passed the
RPM cut with the Box-fitting Least Squares (BLS) algorithm
(Kovács et al. 2002) to identify targets exhibiting transit-like
signals. The BLS algorithm provides several signal detection
metrics that are used to perform automated cuts when
assembling the initial list of transiting planet event candidates
for each reduced field. The metrics (see Hartman & Bakos 2016
for detailed definitions) and typical limits are specified in
Table 1.

2.1.2. Human Vetting of Transit Candidates

Following the automated candidate selection process, the
KELT Science Team examines the candidates in further detail
in order to select a subset of targets to be pursued with follow-
up observations. This process begins with the creation of an
online candidate web page for each object that passes the
automated statistical cuts. An example of a portion of a
candidate page is shown in Figure 2. The candidate page is
designed to give KELT Science Team members an overall
impression of the likelihood of the transit detection being
astrophysically real (as opposed to a spurious signal caused by
noise or telescope systematics), and, if real, the likelihood of
the signal being caused by a genuine exoplanet transiting the
star, rather than by an EB or some other type of FP. Various
plots, statistics, and other information (e.g., from the SIMBAD

Table 1
Typical KELT BLS Selection Criteria

BLS Statistic Selection
(see Hartman & Bakos 2016) Criteria

Signal detection efficiency SDE>7.0
Signal to pink-noise SPN>7.0
Transit depth δ<0.05
χ2 ratio >

c

c

D

D
1.5transit

2

inverse transit
2

Duty cycle q<0.1
r
r

∣ ∣log obs

calc
�1.0

Fraction from one night f1n<0.8

Figure 1. The KELT and TESS fields. The KELT fields are outlined in orange, and representative TESS fields are outlined in purple. The TESS sector labeled TSS1
represents the actual pointing of TESS Southern Sector 1. The other Sectors are placed relative to Sector 1, and the positions are subject to change. Regions where
KELT fields overlap TESS fields are green. Regions where TESS fields have no KELT field overlap are light blue. Regions with no TESS coverage are yellow. The
KELT-North fields are labeled KN01–KN44, and the KELT-South fields are labeled KS05–KS39. Also shown are the Kepler and K2 fields outlined in red, a model of
the galactic plane in magenta, and the locations of the planets discovered by KELT identified by black labels. Fields KN01–KN13 have been observed for more than
10 years as of the publication of this work. Most of the other KELT fields have been observed for three to six years. Figure created with the Montage image mosaic
engine (Berriman & Good 2017).

4

The Astronomical Journal, 156:234 (19pp), 2018 November Collins et al.



Astronomical Database,69 sky images with high spatial
resolution, and measurements from catalogs) assist in this
endeavor. Each KELT Science Team member inspects each
candidate page for all objects that pass the automated selection
criteria in a given field, and based on the member’s best
interpretation of the data, votes if they are in favor of pursuing
the candidate with follow-up observations. Team members can
also add comments to each target to explain the reasoning for
their choice, or raise questions or concerns about the candidate.

After the voting phase, a group vetting conference call is held.
The purpose of this conference call is to discuss the merits of, or
problems with, each candidate for which over half of the KELT
Science Team has voted in favor of pursuing. At this stage, the
KELT Science Team decides whether or not to request follow-
up data for each target. For each target being pursued with
follow-up observations, a priority is assigned. Higher priorities
are given to candidates that are scientifically valuable (e.g.,
bright host stars), have a high likelihood of being genuine
transiting exoplanets, and/or have long orbital periods (since
transit events are relatively rare for longer periods, it is desirable
to observe these when the opportunity arises). The default
follow-up observing strategy begins with requesting time-series

photometric observations of the transit with a seeing-limited
telescope. However, some candidates are also pursued immediately
with spectroscopic follow-up observations. For example, bright,
long-period, isolated candidates may warrant immediate spectro-
scopic follow-up. This is because an EB is a likely FP scenario for
giant planets, and spectroscopic observations are typically more
efficient at confirming or ruling out an EB hypothesis for long-
period candidates compared to photometric observations, since
typically only two RV measurements are required to determine that
the orbiting companion has a stellar mass, and the precise timing of
these measurements is not essential, whereas it may take many
months for the predicted transit of a long-period candidate to be
observable using photometric follow-up resources.
The end product is a list of candidates, each with their own

priority, follow-up observing strategy, and notes to the
observers. These candidates are generally made available to
follow-up observers the following day, and the next phase of
our candidate vetting process begins.

3. The KELT Follow-up Network

3.1. KELT-FUN Members and Follow-up Framework

The primary goal of the KELT Follow-up Network (KELT-
FUN) is to confirm and characterize transiting exoplanets

Figure 2. Example of a portion of a KELT candidate page. Candidate pages are created for all KELT-detected transit-like events that pass the automated statistical
cuts. The light curve plots, BLS periodogram, field images, image variability centroids, and various catalog data provide the information needed for human vetting to
determine the likelihood of a signal being caused by a genuine exoplanet transiting the star, rather than by an FP. The second and fourth panels from the left in the
bottom row show difference images of the in-transit vs. out-of-transit KELT images. Pixels whose variability correlate with the light curve transit times show strong
signals in white. Since the variability is located significantly off-center from the target star in this example, the source of the transit signal is in fact a nearby eclipsing
binary.

69 http://simbad.u-strasbg.fr/simbad/
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Table 2
KELT Follow-up Network Telescopes and Instrumentation

Observatory/Telescope Institution Latitude Longitude Altitude Aperture FOV Scale

(m) (m) (arcmin)
arcsec

pixel

AAT/UCLES Australian Astronomical Observatory −31.2770 149.0661 1100 3.9 spectrograph

ANU 2.3 m/WiFeS Integral Field Spectrograph Australian National University −31.2770 149.0661 1100 2.3 spectrograph

Automated Planet Finder (APF) Lick Observatory 37.3414 121.6429 4200 2.4 spectrograph

Euler 1.2 m/CORALIE Geneva Observatory −29.2594 −70.7331 2400 1.2 spectrograph

FLWO/TRES CfA/SAO 31.6811 −110.8783 1524 1.5 spectrograph

Keck I/HIRES Maunakea Observatory 19.8264 −155.4742 4145 10.0 spectrograph

Large Binocular Telescope/PEPSI Mount Graham International Obs. 32.7013 −109.8891 3221 2×8.4 spectrograph

McDonald/Harlan J. Smith Telescope (HJST) University of Texas at Austin 30.6715 −104.02261 2076 2.7 spectrograph

FLWO/KeplerCam CfA/SAO 31.6811 −110.8783 1524 1.2 23.1×23.1 0.37

Peter van de Kamp Observatory (PvdKO) Swarthmore College 39.9071 −75.3556 65 0.6 26.1×26.1 0.38

Moore Observatory RC (MORC) University of Louisville 38.3444 −85.5289 229 0.6 26.6×26.6 0.39

Moore Observatory CDK20N 38.3444 −85.5289 229 0.5 36.9×36.9 0.54

Mt Lemmon/UL Manner Telescope (ULMT) 32.4424 −110.7888 2792 0.6 26.8×26.8 0.39

Mt. Kent/CDK20S U. Louisville/U. Southern Queensland −27.7979 151.8554 682 0.5 36.9×36.9 0.54

Mt. Kent/CDK700 −27.7979 151.8554 682 0.7 27.3×27.3 0.40

Crow Observatory Crow Observatory 39.2 −7.2 460 0.3048 23×18 0.85

Westminster College Observatory Westminster College 41.1176 −80.3317 327 0.35 24×16 0.45

Kutztown Observatory Kutztown University 40.5113 −75.7858 122 0.6096 13.0×19.5 0.72

Whitin Observatory Wellesley College 42.2953 −71.3067 141 0.6096 20×20 0.58

DEMONEXT—Winer Observatory Ohio State University 31.6656 −110.6018 1515.7 0.5 31×31

Shaw Observatory Shaw Observatory −31.8944 115.9303 0 0.3556

Ellin Bank Observatory −38.2447 145.9600 0 0.3175 20.2×13.5 1.12

Harlingten San Pedro −22.9167 −68.2000 2400 0.5

PEST Perth Exoplanet Survey telescope −31.9925 115.7983 19 0.3 31×21 1.20

ICO Ivan Curtis Observatory −34.8845 138.6309 44 0.235 19×15 0.62

Red Buttes Observatory University of Wyoming 41.1764 −105.5740 2246 0.61 25×25 0.37

41.1764 −105.5740 2246 0.61 9×9 0.53

MBA Observatory Montgomery Bell Academy 35.6772 −85.6089 538 0.6096 19.9×19.9 0.45

GMU Observatory George Mason University 38.8526 −77.3044 95 0.8128 22.2×22.2 0.39

Pratt Observatory Brigham Young University 40.2497 −111.6489 1371 0.4064 16.6×16.6 0.37

40.2470 −111.6503 1357 0.2 25.7×17.3 0.72

West Mountain Observatory 40.0875 −111.8256 2120 0.32 17.9 × 12.0 0.49

40.0875 −111.8256 2120 0.91 21×21 0.61

Harlingten Observatory—New Mexico 31.9469 −108.8975 1402 0.4

Canis Mayor Observatory 44.1044 10.0078 0 0.254

44.1044 10.0078 0 0.4

Salerno University Observatory University of Salerno 40.7750 14.7889 300 0.35 14.4×10.8 0.54

40.7750 14.7889 300 0.60 20.8×20.8 0.61

Haleakala Observatory FTN Las Cumbres Observatory (LCO) 20.7069 −156.2572 3055 2 10×10

BOS 34.6876 −120.0390 500 0.8 14.7×9.8 0.57

ELP 30.6700 −104.0200 2070 1 26.5×26.5 0.46

LSC 3x −30.1674 −70.8048 2198 1 26.5×26.5 0.39

CPT 3x −32.3800 20.8100 1460 1 15.8×15.8 0.24

COJ 2x −31.2733 149.0710 1116 1 15.8×15.8 0.24
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orbiting bright stars, but additional science projects investigat-
ing EBs and other variable stars are also pursued. The members
of KELT-FUN are a mix of professional, student, and highly
capable citizen astronomers distributed across the globe.
Figure 3 shows the longitudinal and latitudinal distribution of
the KELT-FUN observatories. Table 2 lists the KELT-FUN
participating observatories and instrumentation specifications.
KELT-FUN started operations in the spring of 2011 when the
first KELT transiting planet candidates were extracted from the
KELT data and vetted by the KELT Science Team.

Figure 4 displays the relative distribution of observations by
members of KELT-FUN during the calendar year 2016. In this
case, each observation represents a single night of time-series
photometry taken by one of the collaborating KELT-FUN
members. There are 1018 observations represented here by 34
separate members. Note that participation by members can wax

and wane over time due to weather, equipment problems, or
time availability of observers. Additional members have joined
the collaboration since the end of 2016, and some members
who were highly active in previous years have since had low
productivity. We see a roughly power-law distribution in which
a handful of institutions provide the bulk of the observations.
Nevertheless, 20% of the observations were provided by 21 of
the collaborating institutions who observed fewer than 25
nights in the year. As time progresses, more members become
increasingly skilled and efficient at observing. The 1018
observations included in Figure 4 do not each represent a
confirmed planet or expired candidate. Frequently, multiple
nights of observation are needed to identify certain types of FPs
or to determine that a candidate was a false alarm (FA). Such
determinations are a collective use of multiple observations and
usually cannot be ascribed to a single observer.

Table 2
(Continued)

Observatory/Telescope Institution Latitude Longitude Altitude Aperture FOV Scale

(m) (m) (arcmin)
arcsec

pixel

FTS −31.2733 149.0710 1116 2 10×10

Okayama Astrophysical Observatory National Astronomical Obs. of Japan 34.577 133.594 372 1.88 6.1×6.1 0.36
0.50 26×26 1.50

Myers T50 −31.2733 149.0644 1165 0.43 15.5×15.5 0.92

Mt. John Observatory University of Canterbury −43.9856 170.4650 1029 0.61 14×14 0.55

Hazelwood Observatory −38.2994 146.4239 105 0.32 20.0×13.9 1.10

Adams Observatory Austin College 33.6471 −96.5988 254 0.61 26×26 0.38

Ankara University Kreiken Observatory Ankara University 39.8436 32.7792 1250 0.4 11×11

39.8436 32.7792 1250 0.35 12×12

CU Sommers-Bausch Observatory University of Colorado—Boulder 40.0037 −105.2625 1653 0.61 25×25

OPD Observatory OPD Observatory −22.5353 −45.5828 1864 0.6 10×10

Conti Private Observatory 38.9301 −76.4883 0 0.28 14.4×11.5

Spot Observatory Spot Observatory 35.8847 −87.5653 225 0.6096 26.8×26.8

CGHome Observatory 43.7928 10.4747 40 0.2 59×39

AAI—William Miller Sperry Observatory Union County College, Cranford, NJ 40.6679 −74.3201 25 0.609 19.5×13.4

Phillips Academy Observatory Phillips Academy 42.6475 −71.1297 100 0.4 30×30 0.89

Acton Sky Portal 42.4550 −71.4349 60 0.355 17.5×11.7

Star View Hill Observatory 40.9603 −74.9461 220 0.635 15×10

UMD Observatory University of Maryland 39.0021 -76.956 70 0.18 32×21.5
0.15 37.3×25.1
0.355 12.1×8.1

Grant O. Gale Observatory Grinnell College 41.7556 −92.7198 310 0.6096 13×13 0.37

SkyNet University of North Carolina various various various various various various

Rarotonga Observatory Rarotonga Observatory −21.2093 −159.8133 32 0.25 19×19

El Sauce Observatory El Sauce Observatory −30.4711 −70.7650 1600 0.356 18.5×12.3

Estación Astrofísica de Bosque Alegre (EABA) Observatorio Astronómico de Córdoba −31.5983 −64.5467 1250 1.54 17×17 0.25

Pukekohe Observatory −37.1881 174.9092 41 0.3 14×12 0.30

iDK Mt. Stuart Observatory −46.0227 169.8474 361 0.3175 16.2×24

TRT-TNO Thai National Observatory 18.5737 98.4823 2457 0.5 23.4×23.4 0.68

TRT-GAO Yunnan Observatory 26.6955 105.031 3193 0.7 20.9×20.9 0.61

AstroLAB IRIS 50.818 −2.910 39 0.175 37.3×37.3 1.10
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As previously described, the KELT telescope pixels are large
(∼23″), and the KELT photometric aperture has an effective
radius of 3′ (although see Siverd et al. 2012 for details on how
the KELT pipeline uses a weighted aperture). The size of the
effective aperture makes it likely that multiple stars are blended
with a typical KELT target star. Furthermore, the KELT light
curves have limited photometric precision, and some astro-
physical FP configurations cannot be identified with photo-
metric observations alone. In general, the FP transit-like
detections in the KELT light curves can be caused by several
scenarios including

1. A candidate star that is an EB, in which the large depth of
the primary eclipse of the EB is diluted to the depth of a
possible transiting planet through blending with multiple
other sources in the KELT photometric aperture. KELT-
FUN telescopes with higher spatial resolution are able to
distinguish the multiple sources and identify the large
depth of the EB as being non-planetary.

2. A pulsating or rotational variable star that appears to be a
transit candidate when observed at lower precision,
typically due to BLS picking up an alias of the true
variable signal.

3. A non-varying candidate star that is blended with an NEB
that is inside or close to the KELT aperture. KELT-FUN
telescopes with higher spatial resolution are able to
distinguish the multiple sources and identify the other
source as the origin of the apparent transit signal.

4. A fully blended eclipsing binary (BEB). These are cases
similar to the previous one, with the difference being that
the candidate star has an angular separation that is so
close to the other sources that even the follow-up
observations are unable to spatially distinguish the
separate sources. In these cases, the stellar nature of the
eclipses can be detected if the eclipse depth varies in
different bandpasses because the colors of the target star
and EB are sufficiently different so that the fractional
contamination varies with wavelength. This category

includes chance alignments and hierarchical stellar
systems since we do not attempt to differentiate between
bound and unbound systems.

5. An EB system in which the secondary star is small
enough in comparison to the primary to produce a
primary eclipse with a depth consistent with a planetary
transit, even without dilution by blending with other stars.
This can be caused by a configuration of a giant primary
and a main-sequence secondary, or a more massive main-
sequence primary star and a lower-mass secondary main-
sequence star.

6. A grazing EB system, in which the depth of the primary
eclipse is small enough to be consistent with a transiting
planet. Grazing eclipses generally have a V-shaped
morphology, but with the typical photometric precision
of KELT, they may require additional follow-up to
differentiate the trapezoidal morphology typically
expected from a transiting planet (or in general an
eclipsing companion with radius much smaller than the
primary) from the V-shaped morphology expected from a
grazing system. We note that grazing planetary systems
can also have a V-shaped morphology, e.g., O’Donovan
et al. (2007).

7. Finally, there are transit candidate FAs caused by
instrumental or systematic noise and are therefore non-
astrophysical FPs. We do not discuss these further, except
to note that with nearly 30% of all our FPs being non-
astrophysical, the efficiency of the KELT-FUN network
at disposing of these FAs has been a particularly
important resource for the KELT survey.

KELT-FUN includes both photometric and spectroscopic
follow-up observers. Although the collaboration includes both
kinds of observers in communication and analysis efforts, the
way that transit candidates are selected for each type of follow-
up and the use of the online tools we have developed are quite
different for the different types of observing. The next three

Figure 3. The KELT-FUN observatory locations. The map illustrates the longitudinal and latitudinal coverage of the KELT-FUN observatories (blue location
markers) and the two KELT telescopes (red dots). The inset shows an expanded view of the eastern United States observatories. Map data: Google.
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sections refer almost exclusively to the operations of photo-
metric follow-up operations.

3.2. Follow-up Photometry

3.2.1. Planning Photometric Observations

A KELT Transit Finder (KTF) web tool, based on TAPIR
(Jensen 2013), is available to the KELT-FUN team to assist in
planning follow-up photometric observations. An observer
enters an observatory location, a range of dates to search, and
various filtering options to produce a list of observable KELT
candidates that will be transiting during a particular observing
window at their location. An example of the data display
provided by the KTF is shown in Figure 5. Each observable
event is described by a row of output data, which includes
object R.A. and decl. (J2000), time and elevation range of the
event, V magnitude, Moon brightness and separation from the
target, event period, duration, depth in the KELT aperture,
priority ranking, and links to finding charts and other online
resources. Observing notes provide a summary of any previous
follow-up observations and suggestions for the next observa-
tions. Event times that occur during daylight, elevations that are
below a selected threshold, high Moon illumination, and close
Moon proximity are all highlighted with red or magenta text.

A KELT Follow-up Observations Coordinator (KFOC) web
tool is provided that allows the KELT-FUN team to optionally
coordinate observations within a specific night to help avoid
duplication of observations of the same object in the same
filter, especially in cases where there are multiple simultaneous
target events available for observation. KFOC is currently used
by KELT-FUN members in the United States, where the
density of observers is high (see Figure 3). As KELT-FUN
expands, other regions will also be encouraged to use the site.
The online interface of the tool is shown in Figure 6. Observers
enter the target they plan to observe, the planned filter(s), the
planned observational coverage of the event (full, ingress,
egress, etc.), their site, name, and the probability of successful
observations. Newly entered observations are then automati-
cally propagated to all other users monitoring the website.

3.2.2. Reduction and Submission of Follow-up Photometry

KELT-FUN team members calibrate their own images and
extract differential photometry in preparation for submitting
results to the KELT Science Team. There is no requirement to
use a specific software package to reduce data, but many
KELT-FUN members use AstroImageJ (AIJ; Collins et al.
2017) since it was developed out of the KELT-FUN effort, and
support and training are readily available.
Observers are asked to submit a short summary of their

observations and a finder field indicating the target star,
comparison stars, nearby stars searched for deep events, and
any NEBs identified (if applicable). Observers also submit a
light curve plot showing the target star light curve, the NEB
light curve (if applicable), a sample of comparison star light
curves, and a data table containing time of mid-exposure,
differential photometry, photometric uncertainty, and any
important detrending parameters. AIJ produces all of these
data products in a format that is ready to submit with a single
save operation.
Observers are encouraged to submit results within one to two

days of the observations to minimize the chance that another
observer will duplicate observations of the same candidate,
which may be an FP. The submission data products are
attached to an email and sent to a group email list that
distributes the results to the KELT Science Team for analysis
and to all other KELT-FUN members. We find that distributing
results to all KELT-FUN members builds a sense of teamwork
and camaraderie, and allows team members to learn observing
strategies and data reduction techniques from each other.

3.2.3. Use and Analysis of Follow-up Photometry

When a KELT-FUN team member observes a candidate with
photometry, it is their responsibility to extract a light curve for
the target star, check nearby sources for variability, and
contribute a brief report of the observation. A member of the
KELT Science Team is then responsible for analyzing the
newly submitted observation, with additional context given by
the KELT survey data and any past follow-up observations. At
this stage, the KELT Science Team member will either expire
the candidate or decide on an updated observing strategy. This
decision and the reasoning behind it are then communicated to
the full KELT-FUN and KELT Science teams.
For many reasons, the exact procedure for following up

candidates differs from target to target. The utility of different
types of observations and the order in which they are acquired
depend on the target’s observability, telescope resources, and
the various scenarios that can most easily be revealed by a
given type of observation. Here we describe a typical sequence
and explain how FPs are identified at various steps along the
process.
After identifying a transit candidate in the KELT survey

data, a time-series photometric follow-up observation of the
transit is requested. The most useful photometric observations
will cover an ingress and/or egress and more than 50% of the
predicted duration, plus 30 minutes or more of pre-ingress and/
or post-egress out of transit baseline. Once this observation is
complete, the observer will reduce the data, extract a light
curve for the target star, and also check the light curves of
neighboring stars. Observers are expected to check all detected
stars within a 3′ radius and to check nearby stars having a
brightness comparable to or greater than the target star out to 6′

Figure 4. Distribution of the number of photometric follow-up observations
per KELT-FUN member for the calendar year 2016. Note that we include here
only KELT-FUN members who contributed at least one photometric follow-up
observation in 2016; the first bin represents members who contributed between
one and nine observations.
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to account for the possibility of the blending of extended PSF
wings into the target star’s aperture in the survey data. In
practice, most NEBs are found within 1′–2′ (∼3–5 KELT
pixels) of the target star. After this data reduction and initial
analysis, the observer will send their results to the full KELT-
FUN and KELT Science teams, whereupon a member of the
KELT Science Team will analyze the data further and
ultimately decide how to proceed.

If the observation reveals no variability on the target but a
deep event in a nearby star, the candidate is expired as an NEB,
so long as the neighbor is close enough to the target star on the
sky to have caused the event that was identified in the survey
data, the eclipse timing is consistent with the predicted
ephemeris, and the event depth in the neighboring star is deep
enough to exclude a transiting planet as the source of the
signal. In some cases, a transit signal is detected in a
neighboring star, but with a shallow depth consistent with
itself being planetary in origin (e.g., KELT-16b; Oberst
et al. 2017). Situations like this underscore the need for
caution when analyzing follow-up observations so as not to
hastily reject viable candidates.

If the observation does show an event on the target star, the
Science Team member will analyze the follow-up light curve
and the KELT survey data together. This may lead to an
improved ephemeris and/or better knowledge of the depth of
the event. With a more accurate depth measured from a follow-
up light curve, the KELT Science Team member will estimate
the size of the transiting body using a simple model. This
model takes the transit depth and the stellar temperature as
input (the effective temperature either estimated from archival
broadband photometry or from a previously acquired spectrum,
when available), and calculates the radius of the transiting
body. The model assumes the host star is at the zero-age main

sequence (where there is a one-to-one correspondence between
temperature and radius). If the transiting body is estimated to be
larger than 2.5 Jupiter radii, the candidate is expired as an EB.
Otherwise, the estimated companion size is consistent with
planetary, and further follow-up observations are requested.
Typically, the next step is to capture the transit in a different

photometric filter, with the goal of measuring a full event in
both a blue and a red passband that are reasonably well
separated in wavelength (e.g., B and I). This allows us to test if
the transit depth is chromatic, which is indicative of an EB or a
BEB. We do not adopt a strict metric when deciding to expire a
candidate based on filter-dependent transit depths, because light
curve quality (noise, systematic trends, sky conditions, airmass,
and telescope capabilities) can vary greatly between different
observations. In general, differences in transit depths due to
limb-darkening variations across different filters are not large
enough to be detectable with the facilities involved in KELT-
FUN, and so should not be the cause of detectable depth
chromaticity. In practice, a difference of 5 mmag between
the transit depth measured in different filters gives sufficient
confidence to expire the candidate (so long as both light curves
are of high quality). Whenever there is doubt, more data are
requested.
Another photometric test for an EB scenario is to check for a

possible odd/even transit/eclipse depth difference at twice the
BLS-recovered period. For an EB, the BLS algorithm will often
select half the orbital period. If doubling the BLS period results
in a light curve with a primary and secondary eclipse of
different depths, then the candidate is expired as an EB.

3.3. Reconnaissance Spectroscopic Vetting

The photometric follow-up observations are generally the
first round of observations once candidates have been identified

Figure 5. The KELT Transit Finder online portal. KELT-FUN team members select events to observe using the KELT Transit Finder tool. The output filter settings
include geographical location of the observatory, date range, target elevation above horizon at ingress and/or egress, dark time at the observatory, transit depth, host
star brightness, and target priority. Each observable event is described by a row of data in the output which includes the object name and a comprehensive set of
observational information for the target.
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by the KELT candidate selection process, and for the candidates
that make it through the photometric observations, we then obtain
spectroscopic observations. On occasion, a target that emerges
from the vetting process described in Section 2.1.2 will be sent
directly for spectroscopic observations. That happens when the
KELT survey light curve provides an unambiguous sign of a
transit-like feature with a reliable period, and there are no
indications in images from the Digitized Sky Survey70 of any
stars close enough to the target to have caused the detected transit
signal after blending with the target. Spectroscopy may also be
requested simultaneous with the photometry due to scheduling
reasons and for long-period transits.

Spectroscopic observations are not organized in the same
way as photometric observations. There are only a few
members of KELT-FUN with spectroscopic capabilities with
the spectroscopic resolution and signal-to-noise ratio (S/N)
requirements needed to rule out FP spectroscopically. Lists of
candidates slated for spectroscopic observations are compiled
by members of the KELT Science Team and sent to individual
observers with the available resources. Reconnaissance spec-
troscopic observations aimed at efficiently identifying astro-
physical FPs are performed with the Tillinghast Reflector
Echelle Spectrograph (TRES; Szentgyorgyi & Fűrész 2007;
Fűrész et al. 2008), on the 1.5 m telescope at the Fred Lawrence
Whipple Observatory (FLWO) on Mt. Hopkins, Arizona,71 and
with the Wide Field Spectrograph (WiFeS; Dopita et al.
2007) on the Australian National University (ANU) 2.3m
telescope at Siding Spring Observatory in Australia.72 These

observations usually follow the procedure laid out in Latham
et al. (2009). An initial observation taken at quadrature is
obtained and cross-correlated against a library of synthetic
spectral templates to estimate the stellar atmospheric properties,
including Teff , *v Isin , and glog ; if the host star is deemed to
be evolved, the candidate is usually rejected as the transiting
companion would not be of planetary radius. The cross-
correlation function is examined for signatures of contamina-
tion due to stellar binary or blended companions. Candidates
that pass the initial inspection then receive additional
observations timed at the opposite quadrature to check for
large RV variations (1 km s−1) that may be induced by
stellar-mass companions. The presence of multiple lines or
large velocity variations alone is not necessarily a reason to
expire a planet candidate (e.g., KELT-1 b; Siverd et al. 2012).
If the line movements or RV variations are not in phase with
the photometric period, the candidate could still be a valid
planetary system (e.g., KELT-19 Ab; Siverd et al. 2018). For
the southern candidates, we also have the unique capability of
examining the candidates and surrounding stars with the WiFeS
(Bayliss et al. 2013) integral field spectrograph. With WiFeS,
we are able to simultaneously obtain spectra for stars that are
nearby (and blended in KELT photometry) with the KELT
target star. We can therefore search for stellar EBs that may be
blended in the KELT photometry. Typically, this only requires
a few spectroscopic measurements taken at quadrature as
predicted by the KELT transit ephemeris.

3.4. Confirmation and Final Vetting of Candidates

At this point, if a candidate cannot be ruled out as an FP by
any of the aforementioned tests, it is potentially a genuine
transiting exoplanet. Typically, more photometric observations

Figure 6. The KELT-FUN Observations Coordinator for North America. Observers enter information about their own observing plans for specific targets on a given
night to allow multiple observers to efficiently coordinate their observations and avoid the unnecessary duplication of effort.

70 https://archive.stsci.edu/cgi-bin/dss_form
71 http://www.sao.arizona.edu/FLWO/whipple.html
72 http://rsaa.anu.edu.au/observatories/telescopes/anu-23m-telescope
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are requested to refine the ephemeris, and transit depth and
shape, while more high-precision spectroscopic follow-up
observations are requested to measure the RV orbit of the
system (constraining the planetary mass and orbital eccentri-
city), and to improve our knowledge of the stellar parameters.
In the cases of slowly rotating host stars, we often can obtain
precise masses of the planetary companions with high-
resolution, high-S/N RV measurements, at the 3–30 -m s 1

level, across the orbital phase of the system. In addition, we
also examine the line bisector spans to confirm that the detected
RV orbits are not induced by blended background binaries
(Mandushev et al. 2005).

If the host star is found to be a rapid rotator with *v Isin
greater than about 40 km s−1, then it is often not possible to
precisely measure the RV orbit due to the rotational broadening
of the spectral features (and, since rapidly rotating stars tend to
be hotter, a lack of sufficient spectral features by which RV
measurements are made). In these cases, an upper limit can
sometimes be placed on the mass of the transiting body,
perhaps excluding an EB scenario consisting of a relatively
massive main-sequence primary and a low-mass (but still
stellar) secondary. If the transit depth indicates a planetary-
sized companion, such a candidate can be confirmed through a
Doppler tomographic (DT; see Collier Cameron et al. 2010)
analysis (up to rotational speeds of *v Isin ≈200 km s−1). DT
analysis can confirm that the cause of the photometric signal is
indeed a planet-sized body transiting the rapidly rotating target
star, ruling out a BEB scenario. This is an integral part of the
KELT discovery strategy, since a significant fraction of our
candidates (and also a large fraction of our confirmed planet
discoveries) have hot, rapidly rotating host stars (Bieryla
et al. 2015).

If a planet candidate has passed all of the aforementioned
cuts, adaptive optics (AO) observations are requested. AO
observations can reveal the existence and flux of projected
nearby stars. Accounting for the contaminating flux from these
nearby stars (if they exist) results in improved parameters of the
planetary system. If a projected nearby companion is not
detected in the AO data, useful limits on the existence of
potential companions can be placed as a function of magnitude
difference and projected separation from the target star.

Finally, if a planetary mass companion is confirmed from
photometric time-series imaging, AO imaging, and RV and/or

DT analysis, the candidate is promoted to a confirmed
exoplanet and the discovery publication process begins.
The various FP scenarios are usually confidently classified as

such. However, determining transit candidate FAs can be more
difficult. If a follow-up light curve does not show a transit-like
event at the predicted time, the Science Team member must
consider the quality of both the follow-up light curve and the
KELT survey data. If there truly is an event on target at the
predicted time, but is of a shallow depth, then the event may
evade detection if the scatter in the follow-up light curve is
similar to or greater than the transit depth, or if systematic
effects (e.g., a trend with airmass, or deteriorating sky
conditions) dominate. In this situation, additional observations
are scheduled, with a request that the target only be observed if
a high S/N is achievable, as observations with high scatter can
neither rule out nor confirm the presence of a shallow transit.
These situations must be dealt with carefully, as to not expire
viable candidates with events that are difficult, but not
impossible, to detect (e.g., KELT-11b, with a 0.25% transit
depth; Pepper et al. 2017). Sometimes, the particular config-
uration of a candidate system can lead to a planetary
confirmation even with ambiguity regarding the host star
(e.g., NGTS-3Ab, a binary system with a transiting planet;
Günther et al. 2018). If a follow-up light curve can confidently
rule out the existence of a transit at the predicted time, then an
alternative ephemeris will be explored (if any viable alter-
natives exist). This may correspond to another strong peak
found by the BLS algorithm, or an ephemeris with twice the
original BLS-determined period, but half a phase away from
what has already been covered by a follow-up observation.
Another photometric observation at the new ephemeris is then
acquired. If, after two (or more, if needed) observations there is
no evidence for a transit in the follow-up data, the candidate
will typically be expired as an FA. This process is somewhat
subjective, so an FA classification could still be incorrect if the
ephemerides derived from the KELT data lack the precision
needed to predict the transit center time within approximately
the duration of the transit event at the epoch of the follow-up
observations. It is at the discretion of the Science Team
member to decide if a suspected FA candidate is worth any
additional follow-up resources, or if those resources are better
spent on candidates that are more likely to yield results. We
therefore stress that, for this reason, and many others, we do not
claim that our FP catalog is complete in any sense.

4. The KELT False-positive Catalog

We present the results of 1128 KELT-FUN FP detections in
machine-readable catalog format to help minimize duplicate
follow-up observation efforts by current and future transiting
planet wide-field surveys such as TESS.

4.1. False-positive Categories

KELT FPs are classified into nine types that are organized
into two broad categories—Spectroscopic FPs and Photometric
FPs—as shown in Table 3. If only spectroscopic or photometric
follow-up observations were obtained before confirming a
candidate as an FP, one of the corresponding categories was
assigned. If the FP was detected in both spectroscopic and
photometric follow-up observations, the observation that
provided the highest confidence in an FP categorization was
used to assign an FP category. When both photometric and

Table 3
KELT False Positives by Category/Type

Category Type Description Total

Spectroscopic FPs
SB1 1 Single-lined binary (RV -1 km s 1) 307
SB2 2 Multi-lined binary 140
RV0 3 No significant RV detected 13
Giant 4 Spectroscopic Giant 29
Photometric FPs
EB1 5 Too deep in follow-up 130
EB2 6 Different primary and secondary

depths
25

BEB 7 Blend in follow-up aper.
(chromaticity)

90

Variable 8 Variable star caused KELT detection 16
NEB 9 Nearby EB (blend in KELT aperture) 378

Total 1128
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spectroscopic observations support the same underlying
astrophysical configuration with similar confidence, we gen-
erally arbitrarily assigned a spectroscopic category. In addition
to the confirmed FPs reported here, we classified about 450
KELT candidates as FAs. Most or all of the FAs are believed to
have been caused by spurious signals in the KELT data, and
thus are not included in the KELT FP catalog. Nevertheless, as
stressed above, we cannot be completely confident that some of
the candidates that we designated as FAs (and thus are not
included in our catalog) are, in fact, astrophysical FPs. Again,
we make no claims as to the completeness of our catalog over
any region of parameter space.

Spectroscopically detected FPs are separated into four
categories labeled RV0, Giant, SB1, and SB2 in the catalog.
The RV0 category is assigned if a photometric event has been
confirmed by KELT-FUN, but no significant RV variation is
detected in spectroscopic follow-up, at a level that rules out the
presence of a giant planet at the nominally detected period. The
Giant category is assigned if the target star is spectroscopically
identified as a giant star, which was not identified and removed
by the reduced proper motion cut, and there is no detected
velocity variation. Eclipses of giant stars detected by KELT are
likely caused by stellar companions since a planetary transit of
a giant star would, in general, be too shallow to be detectable
by KELT. The SB1 category is assigned if two or more spectra
show a single-lined stellar spectrum with an RV semi-
amplitude that is too large to be consistent with a planetary
companion (  -K 1 km s 1), and the velocities are not incon-
sistent with the photometric ephemeris. Finally, the SB2
category is assigned if one or more spectra show a multi-lined
composite spectrum that is consistent with multiple blended
stars and an RV variation that is consistent with the
photometric ephemeris or is too large to be consistent with a
planetary companion.

Regarding the SB2 category, when we detect a composite
spectrum, we set it aside and do not invest additional telescope
time to determine an orbit. Getting agreement with both the
period and epoch between the nominal photometric ephemeris
and an orbital solution would be the only way to prove that
eclipses of two stars are the source of the shallow transit-like
dips. Early in the history of the project, when there were fewer
candidates, we did follow up many EBs to show that stellar
eclipses explained the light curves (see Latham et al. 2009 for
details). These early observations showed that quite often, the
photometric ephemeris had the period wrong by a factor of 2,
and occasionally by more exotic factors. In principle, there
could still be a planet around one of the stars in a system with
composite spectra, but it will be almost impossible to say
anything reliable about the mass and radius without an
inordinate amount of additional observations and effort. Thus,
while technically these cases are not necessarily FPs, we regard
them as FPs for all intents and purposes of the KELT survey.

Photometric FPs are separated into five categories labeled
EB1, EB2, BEB, Variable, and NEB in the catalog. The EB1
category is assigned if the deblended transit depth in the
follow-up photometry is too deep, relative to the host star’s
estimated radius, to be consistent with a transiting planet
companion. The category EB2 is assigned if even-numbered
orbits have a depth different from the that of odd-numbered
orbits, indicating primary and secondary eclipses of an EB or
blended EB system. If significantly different transit depths are
measured in blue and red filters, the BEB category is assigned.

Eclipses showing depth chromaticity can be caused by EBs
blended with the target star or a hierarchical stellar system in
the photometric aperture of follow-up observations. This can
also be caused by an unblended EB system consisting of two
stars with different surface temperatures, and where the light
from the secondary is not negligible compared to the primary.
In some cases, variable stars that are not in eclipsing systems
cause a KELT detection. We categorize those FPs as simply
Variable. The most common photometric FPs result from
transiting candidate host stars with NEB systems, or NEBs, that
are blended with the target star in the KELT aperture, but are
not blended in the follow-up aperture.

4.2. Information in the Catalog

The data fields provided in the catalog are described in
Table 4. Certain fields may be empty due to unavailable data or
non-applicable fields for certain FP types. In addition to the FP

Table 4
Description of False-positive Catalog Data Columns

Column Name Description

KELT_ID KELT Survey candidate ID
2MASS_ID Two Micron All-Sky Survey ID
TIC_ID TESS Input Catalog ID
In_CTL Flag: star is in TESS Candidate Target List
TESS_priority Priority from TESS Input Catalog
FP_type_name False-positive-type name
FP_type False-positive-type number
RA_hours R.A. in hours (J2000)
RA_deg R.A. in degrees (J2000)
RA_hms R.A. in sexagesimal (J2000)
Dec_dms Decl. in sexagesimal (J2000)
Dec_deg Decl. in degrees (J2000)
Galactic_long Galactic longitude in degrees
Galactic_lat Galactic latitude in degrees
Ecliptic_long Ecliptic longitude in degrees
Ecliptic_lat Ecliptic latitude in degrees
Vmag V magnitude of star
Tc Transit center time in BJDTDB

Tc_err Uncertainty in Tc
Period_days Period of transit in days
Period_err Uncertainty in period
Duration_hrs Duration of transit in hours
KELT_depth_mmag Depth of transit in KELT aperture in mmag
EB_K_km/s RV semi-amplitude of EB in km s−1

EB_depth_mmag Depth of EB transit in mmag
NEB_RA R.A. of nearby eclipsing binary
NEB_Dec Decl. of nearby eclipsing binary
NEB_dist_text Distance from target star to NEB
NEB_dist_arcsec Numeric distance from star to NEB in arcs
NEB_dist_is_approx_flag Flag: distance to NEB is approximate
NEB_direction Direction from star to NEB
NEB_depth_text Depth of NEB transit
NEB_depth_percent Numeric depth of NEB transit in mmag
NEB_depth_is_approx_flag Flag: NEB depth is approximate
NEB_depth_is_lower_limit Flag: NEB depth is a lower limit
NEB_obs_epocha Date NEB was observed
NEB_obs_filter Filter used to observe NEB

Note.
a Note that on some occasions, an NEB was observed on multiple nights. The
main reason is that additional observations took place prior to the submission
of the results of an earlier observation.

(This table is available in its entirety in machine-readable form.)
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classification, candidate host star IDs, including the KELT,
2MASS, and TESS Input Catalog (TIC) IDs; equatorial,
Galactic, and ecliptic coordinates; and V magnitude are
included.

For the associated candidate transit event measured from the
KELT light curves, the transit center time and uncertainty,
orbital period and uncertainty, transit duration, and transit
depth as measured in the KELT aperture are provided. For
SB1-type FPs, the RV semi-amplitude is provided, if available,
and for EB1-type FPs, the EB depth is included, if available.

For NEB-type FPs, we provide information related to the
nearby eclipsing system, if available. In some cases, the R.A.
and decl. (J2000) of the target is provided, but for most NEBs,

the approximate distance and direction from the candidate host
star to the NEB star is provided. A flag indicating that the
distance is approximate is set if the precise measured distance
was not readily available. We also provide the depth of the NEB,
as measured from the follow-up photometry, if available. Two
flags are associated with NEB eclipse depths. The first flag
indicates that the depth was estimated by eye from a plot, and the
second flag indicates that the depth was a lower limit due to the
follow-up photometry not including both pre- or post-eclipse and
mid-eclipse coverage. Finally, the date and filter band of the
NEB follow-up observations is provided, if available.

4.3. The Catalog Data

The catalog data are provided in machine-readable tabular
format. The data are organized as specified in Section 4.2. An
example of the data provided for all FP types is shown in
Table 5. An example of each of the nine FP types is provided.
Table 6 shows the two data columns that include RV semi-
amplitude for some SB1 systems and eclipse depths for some
EB1 systems. Finally, Table 7 shows four examples of
additional data that are included for NEB-type FPs, if available.
The values in all three tables are included in a single line of the

Table 5
KELT False-positive Catalog (Data Common to All False Positives)

KELT ID 2MASS ID TIC ID In CTL TESS Priority R.A. (J2000) R.A. (J2000) R.A. (J2000) Decl. (J2000)
(h:m:s) (hr) (degrees) (d:m:s)

KJ06C001078 J06593615+0104056 237853540 1 0.000192674512176 06:59:36.10 6.9933611 104.9004167 01:04:05.60
KJ06C059566 J07022053+0420573 291308749 1 0.000921388339681 07:02:20.50 7.0390278 105.5854167 04:20:57.30
KS14C001431 J19215239+0706085 132022468 1 0.000557041092605 19:21:52.41 19.3645579 290.4683687 07:06:08.34
KS13C017379 J18263815–0838339 385835154 1 0.000479365808543 18:26:38.16 18.4439339 276.6590090 −08:38:33.91
KS13C018108 J17362073+0955340 277626665 1 0.00078259577339 17:36:20.74 17.6057597 264.0863961 09:55:33.90
KS05C044312 J06160057+0619299 274235078 1 0.000835138112045 06:16:00.58 6.2668265 94.0023979 06:19:29.96
KJ06C000533 J06544012+0643268 235380067 1 0.000781927886478 06:54:40.10 6.9111389 103.6670833 06:43:26.70
KS19C02564 J02134607–4146319 138735221 1 0.000825362797298 02:13:46.10 2.2294722 33.4420833 −41:46:31.80
KJ06C019953 J08001402+0706385 320538316 1 0.000892102663055 08:00:14.00 8.0038889 120.0583333 07:06:38.50

M M M M M M M M M

KELT ID Decl. (J2000) Galactic Galactic Ecliptic Ecliptic Vmag Tc Tc Err
(degrees) Longitude Latitude Longitude Latitude (BJDTDB) (Days)

KJ06C001078 1.0682222 212.912 2.3034 106.0459167 −21.5448889 7.94 2457048.96 0.26
KJ06C059566 4.3492500 210.295 4.40377 106.3809444 −18.2081389 11.9 2457061.345 0.01
KS14C001431 7.1023156 63.1132 7.28434 293.3507778 28.8974167 8.39 2457248.36 0.0041
KS13C017379 −8.6427529 26.0371 3.41557 276.8049722 14.6393889 11.24 2457197.443 0.013
KS13C018108 9.9260830 31.2266 20.1281 263.0319722 33.2224444 12.3 2457197.691 0.0058
KS05C044312 6.3249894 233.617 −19.0231 94.1613333 −17.0565000 11.56 2457344.24 0.0056
KJ06C000533 6.7240833 273.735 −23.7269 104.1327222 −16.0471944 7.22 2457058.462 0.0034
KS19C02564 −41.775500 155.554 −49.7563 10.2086944 −50.7795833 9.59 2456601.696 0.016
KJ06C019953 7.1106944 209.427 20.7299 120.6959444 −13.1830278 11.28 2457058.008 0.0026

M M M M M M M M

KELT ID Period Period Error Duration KELT Depth FP Type Type
(days) (days) (hr) (mmag) Name

KJ06C001078 18.7956 0.0041 13.44 9.13 SB1 1
KJ06C059566 1.292033 0.000011 2.7168 14.7 SB2 2
KS14C001431 1.8590175 0.000007 2.347 6.91 RV0 3
KS13C017379 12.04464 0.00017 5.352 21.1 Giant 4
KS13C018108 3.587427 0.00002 3.696 18 EB1 5
KS05C044312 1.2119727 0.000006 2.062 16.1 EB2 6
KJ06C000533 0.32028678 0.000001 2.22 11.68 BEB 7
KS19C02564 1.019386 0.000018 1.75 5.2 Variable 8
KJ06C019953 0.6348532 0.0000016 1.5624 16.36 NEB 9

M M M M M M M

Table 6
KELT False-positive Catalog (Additional EB Data)

KELT ID EB K EB Depth
km s−1 (mmag)

KJ06C001078 28
KJ06C001172 15
KS13C018108 180
KS14C005429 70
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catalog. The KELT ID column is repeated in the table panels
for clarity and is not repeated in the catalog.

The catalog is also available through a FilterGraph (Burger
et al. 2013) portal73 for ready access to catalog data and
plotting. The FilterGraph portal also includes links to plots of
field images, which may show the locations of comparison stars
used for the differential photometry and the position of an NEB
relative to the candidate host star, if applicable. Figure 7 shows
an example NEB field image. Also included in the
FilterGraph portal are links to light curve plots showing the
target star light curve, and if applicable, the NEB light curve.

Figure 8 shows an example NEB light curve plot. For EB1-type
FPs, links are provided to plots of the phased RV data and best-
fit orbital model, when available.

5. Discussion

The particular distribution of FP types for a given transit
survey depends on many factors, including the survey design,
the pixel scale, the photometric precision, pre-selection of
target stars, and especially the sequence of follow-up observa-
tions. Consistent with other surveys, SB1s and NEBs are the
dominant types of FPs for KELT.
Since KELT-FUN has significantly more photometric

resources than spectroscopic resources, photometric follow-up
is generally pursued first, except for long-period (P10 days),
or other high-value targets. Because of our photometry-first
approach, there are more photometric FPs in the catalog than
there would be if spectroscopy-first were employed. This
demonstrates that for future wide-field transit surveys such as
TESS, prioritizing relatively low-cost photometric observations,
which can be conducted by facilities of all sizes, over more
limited, and usually more expensive, spectroscopic observa-
tions can effectively reduce the workload on the more precious
spectroscopic resources. This is especially the case when there
is an extensive network of telescopes with apertures smaller
than 1 m, which will not be able to obtain precision RV, but
which can reliably obtain sub 1% photometry with seeing-
limited angular resolution.
Figure 9 shows the sky location of all of the FPs included in the

KELT FP Catalog. Symbol color represents FP type. The general
regions of KELT sky coverage that have been followed-up are
obvious and generally correspond to the KELT fields with the
most data. Note that there are more FPs in the northern hemisphere
than in the southern hemisphere because KELT-North has been
running ∼5 years longer than KELT-South. Also note the higher
density of NEBs in the crowded galactic plane. The overall
dominance of NEB and SB1 types is easily visualized from the
high density of red and gray symbols, respectively.
Figure 10 displays all KELT FPs as KELT-detected depth

versus period. Symbol color represents FP type. Photometric
NEBs dominate at periods less than ∼10 days since
photometry-first is generally pursued for those candidates
while SB1s dominate the longer period KELT detections.
Figure 11 displays all KELT FPs as KELT-detected depth

Table 7
KELT False-positive Catalog (Additional NEB Data)

KELT ID NEB RA NEB Decl. NEB Dist NEB Dist NEB Dist is NEB Dir
(J2000) (J2000) (text) (arcsec) Approx. Flag

KS36C077636 17:15:45 −65:14:01 68″ 68 0 SSW
KS27C034425 21:19:04 −63:52:09 64″ 64 0 SE
KS36C007691 17:32:35 −41:27:10 7″ 7 0 NNE
KS34C011419 9:10:54 −53:55:53 21″ 21 0 S

M M M M M M M

KELT ID NEB Depth NEB Depth NEB Depth is NEB Depth is NEB Obs NEB Obs
(text) (%) Approx. Flag Lower Limit Flag Date Filter

KS36C077636 ∼37% 37 1 0 20160825 GG
KS27C034425 28% 28 0 0 20160912 GG
KS36C007691 14% 14 0 0 20160917 GG
KS34C011419 ∼40% 40 1 0 20161220 GG

M M M M M M M

Figure 7. Example of a sky image of a target field with an NEB, produced by
AIJ. The target star aperture is marked T1. The additional sources encircled
with a green aperture were checked for NEBs. In this case, the star in the
aperture marked T11 was determined to be an NEB. The yellow line shows
the direction from the target star to the NEB. The red text and bars show the
horizontal and vertical scales of the image. Similar figures are provided for
most NEB-type FPs at the KELT False Positive FilterGraph Portal.

73 https://filtergraph.com/kelt_false_positive_catalog
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versus V-band magnitude. Symbol color represents FP type.
Photometric NEBs dominate at depths less than ∼10mmag.

Figure 12 shows the sky location of all spectroscopic giant
FPs. The symbol size represents V-band magnitude. These are

giant stars that passed the reduced proper motion cut and made
it into the KELT input catalog. Note that despite the larger
number of FPs in the northern hemisphere, most of the
spectroscopic giant FPs are in the southern hemisphere. We
believe that the most likely explanation for this is that, prior to
the Gaia era, the available proper motion surveys in the
southern hemisphere have been less extensive (see, e.g.,
Stassun et al. 2018 for a discussion of this in the context of
the TESS Input Catalog).

Figure 8. Example of a light curve plot of an NEB, produced by AIJ. The
normalized flux of the candidate target star is shown as blue dots. The NEB
light curve is shown as red dots. The KELT-predicted ingress and egress times
are shown as red vertical dotted lines. Arbitrarily scaled and shifted airmass
(inverted), total comparison star counts, sky-background, and average FWHM
are shown as teal lines, brown dots, yellow lines, and gray lines, respectively.
Similar figures are provided for most photometric FPs at the KELT False
Positive FilterGraph Portal.

Figure 9. Sky location of all KELT false positives. Symbol color represents FP
type. The general regions of KELT sky coverage that have been followed-up
are obvious and generally correspond to the KELT fields with the most data.
Note that there are more FPs in the northern hemisphere than in the southern
hemisphere because KELT-North has been running ∼5 years longer than
KELT-South. Also note the higher density of NEBs in the crowded galactic
plane. The figure was created at the KELT False Positive FilterGraph portal.

Figure 10. KELT depth vs. period. Symbol color represents FP type.
Photometric NEBs dominate at periods less than ∼10 days since photometry-
first is generally pursued for those candidates while SB1s dominate the longer
period KELT detections. The figure was created at the KELT False Positive
FilterGraph portal.

Figure 11. KELT depth vs. V-band magnitude. Symbol color represents FP
type. Photometric NEBs dominate at depths less than ∼10mmag. The figure
was created at the KELT False Positive FilterGraph portal.

Figure 12. Spectroscopic giant false positives. The symbol size represents
V-band magnitude. Note that despite the larger number of FPs in the northern
hemisphere, most of the spectroscopic giant FPs are in the southern
hemisphere. The figure was created at the KELT False Positive
FilterGraph portal.
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Given the similarity of the KELT and TESS pixel scales and
the significant overlap of sky coverage (see Figure 1), the
KELT FP Catalog provides a pre-vetted set of FPs for TESS.
Public knowledge of these data will help to minimize
duplication of follow-up observations during the TESS era.

6. Summary

The KELT transiting exoplanet discovery process is
presented including our follow-up observation process that
determines if a KELT-detected candidate event is caused by a
transiting planetary mass companion, or if it was caused by an
FP or FA. We also describe our large worldwide network of
professional, student, and highly capable citizen astronomer
photometric and spectroscopic follow-up observation partners.
Tools developed out of the KELT project to aid in selecting,
scheduling, and reducing follow-up observations, and that keep
our KELT-FUN team working efficiently, are also presented.

The KELT-FUN team has been conducting follow-up
observations since 2011, which have so far produced more
than 20 transiting exoplanet planet discoveries, 1128 FP
confirmations, and ∼450 FAs. The planet discovery rate is
∼1.3% after human vetting of the KELT candidate events, and
∼2% after FAs have been eliminated. The high FA rate is due
to our slight reduction of KELT detection thresholds to
minimize the chance of throwing out candidate events that
are actually caused by a transiting exoplanet. These more
aggressive detection thresholds are possible because of our
strong follow-up network. The relatively high FP rate is due to
the large KELT pixels (and the resulting large 3′ photometric
apertures) and the relatively low KELT photometric precision,
but is again facilitated by size and dedication of the KELT-
FUN team.

The FPs have been classified into four spectroscopic and five
photometric categories. The NEB and SB1 categories are the
dominant photometric and spectroscopic categories, respec-
tively, with NEBs being the category with the most FPs due to
our general photometry-first follow-up approach. The giant FP
category has only 29 total FPs, indicating that the reduced
proper motion cut technique used to minimize the number of
spectroscopic giants in the KELT input catalog performs well.

We expect that the KELT survey will continue into the era of
TESS for an indeterminate amount of time. There will be
regions of the sky not fully covered by TESS during the
primary mission in which KELT can continue to confirm new
planet discoveries. Furthermore, we expect that continuing to
build upon the already long time baseline of KELT data will
yield valuable results for transiting exoplanet science as well as
other ancillary science. The success of KELT-FUN shows the
value of an organized and motivated combination of profes-
sional, student, and citizen astronomers, and such efforts will
play an important role in confirming TESS objects of interest
(TOIs) as planets. While the TESS mission is organizing
follow-up observers under the TESS Follow-up Observing
Program (TFOP), we expect that KELT-FUN will continue into
the era of TESS to support the continued KELT survey and to
follow-up TOIs in ways that are complementary to TFOP. One
such planned complementary program intends to combine the
long time baseline of the KELT data with TESS single-transit
detections and KELT-FUN observations to confirm long-period
giant planets (X. Yao et al. 2018, in preparation).

The KELT FP catalog has been published to help minimize
duplication of follow-up observation efforts by current and

future transiting planet wide-field surveys such as TESS. We
encourage other transit surveys to make their catalogs of FPs
public to help increase the efficiency of planet confirmation for
the TESS mission and other wide-field transiting exoplanet
surveys, and for the benefit of the exoplanet community in
general.

The authors thank the anonymous reviewer and scientific
editor for helpful suggestions regarding both form and content.
We also thank other KELT-FUN participants who enabled,
gathered, and/or reduced data for this project, including
Michael Endl, Chas Beichman, Lars Buchhave, Debra Fischer,
Ian Crossfield, Rahul Patel, and many others. This project
makes use of data from the KELT survey, including support
from The Ohio State University, Vanderbilt University, and
Lehigh University, along with the KELT follow-up collabora-
tion. Work performed by J.E.R. was supported by the Harvard
Future Faculty Leaders Postdoctoral fellowship. D.J.S. and
B.S.G. were partially supported by NSF CAREER grant AST-
1056524. Early work on KELT-North was supported by NASA
grant NNG04GO70G. Work by S.V.Jr. is supported by the
National Science Foundation Graduate Research Fellowship
under grant No. DGE-1343012 and the David G. Price
Fellowship in Astronomical Instrumentation. Work by G.Z. is
provided by NASA through Hubble Fellowship grant HST-
HF2-51402.001-A awarded by the Space Telescope Science
Institute, which is operated by the Association of Universities
for Research in Astronomy, Inc., for NASA, under contract
NAS 5-26555. K.K.M. acknowledges the support of the
Theodore Dunham, Jr. Fund for Astronomical Research
and the NASA Massachusetts Space Grant consortium.
J.R.C. acknowledges partial support from NASA grant
NNX14AB85G. D.W.L., K.A.C., and S.N.Q. acknowledge
partial support from the TESS Mission. M.D.J., D.C.S., and
E.G.H. thank the Brigham Young University College of
Physical and Mathematical Sciences for continued support of
the WMO and OPO research facilities. This paper includes data
taken at The McDonald Observatory of The University of
Texas at Austin. Research at the Phillips Academy Observatory
is supported by the Israel Family Foundation and the Abbot
Academy Association. This work is partially based on
observations obtained with the 1.54 m telescope at Estación
Astrofísica de Bosque Alegre dependent on the National
University of Córdoba, Argentina. This research made use of
Montage. It is funded by the National Science Foundation
under grant number ACI-1440620, and was previously funded
by the National Aeronautics and Space Administration’s Earth
Science Technology Office, Computation Technologies Pro-
ject, under Cooperative Agreement Number NCC5-626
between NASA and the California Institute of Technology.
This work makes use of observations from the LCOGT
network. We thank TÜBİTAK for the partial support in using
T100 telescope with project number 16CT100-1096. Authors
from Ankara University also acknowledge the support by the
research fund of Ankara University (BAP) through the project
13B4240006. This work has made use of NASA’s Astro-
physics Data System, the Extrasolar Planet Encyclopedia, the
NASA Exoplanet Archive, the SIMBAD database operated at
CDS, Strasbourg, France, and the VizieR catalogue access tool,
CDS, Strasbourg, France. We make use of Filtergraph, an
online data visualization tool developed at Vanderbilt Uni-
versity through the Vanderbilt Initiative in Data-intensive

17

The Astronomical Journal, 156:234 (19pp), 2018 November Collins et al.



Astrophysics (VIDA). We also used data products from the
Widefield Infrared Survey Explorer, which is a joint project of
the University of California, Los Angeles; the Jet Propulsion
Laboratory/California Institute of Technology, which is funded
by the National Aeronautics and Space Administration; the
Two Micron All Sky Survey, which is a joint project of the
University of Massachusetts and the Infrared Processing and
Analysis Center/California Institute of Technology, funded by
the National Aeronautics and Space Administration and the
National Science Foundation. MINERVA is a collaboration
among the Harvard-Smithsonian Center for Astrophysics, The
Pennsylvania State University, the University of Montana, and
the University of New South Wales. MINERVA is made
possible by generous contributions from its collaborating
institutions and Mt. Cuba Astronomical Foundation, The David
& Lucile Packard Foundation, National Aeronautics and
Space Administration (EPSCOR grant NNX13AM97A), The
Australian Research Council (LIEF grant LE140100050), and
the National Science Foundation (grants 1516242 and 1608203).
Any opinions, findings, and conclusions or recommendations
expressed are those of the authors and do not necessarily reflect
the views of the National Science Foundation. The Digitized
Sky Surveys were produced at the Space Telescope Science
Institute under U.S. Government grant NAG W-2166. The
images of these surveys are based on photographic data obtained
using the Oschin Schmidt Telescope on Palomar Mountain and
the UK Schmidt Telescope. The plates were processed into the
present compressed digital form with the permission of these
institutions. The National Geographic Society—Palomar
Observatory Sky Atlas (POSS-I) was made by the California
Institute of Technology with grants from the National
Geographic Society. The Second Palomar Observatory Sky
Survey (POSS-II) was made by the California Institute of
Technology with funds from the National Science Foundation,
the National Geographic Society, the Sloan Foundation, the
Samuel Oschin Foundation, and the Eastman Kodak Corpora-
tion. The Oschin Schmidt Telescope is operated by the
California Institute of Technology and Palomar Observatory.
The UK Schmidt Telescope was operated by the Royal
Observatory Edinburgh, with funding from the UK Science
and Engineering Research Council (later the UK Particle
Physics and Astronomy Research Council), until 1988 June,
and thereafter by the Anglo-Australian Observatory. The blue
plates of the southern Sky Atlas and its Equatorial Extension
(together known as the SERC-J), as well as the Equatorial Red
(ER), and the Second Epoch [red] Survey (SES) were all taken
with the UK Schmidt. All data are subject to the copyright given
in the copyright summary.74 Copyright information specific to
individual plates is provided in the downloaded FITS headers.
Supplemental funding for sky-survey work at the ST ScI is
provided by the European Southern Observatory.

Software: AstroImageJ (Collins et al. 2017), FilterGraph
(Burger et al. 2013), ISIS (Alard & Lupton 1998; Alard 2000),
TAPIR (Jensen 2013).

ORCID iDs

Karen A. Collins https://orcid.org/0000-0001-6588-9574
Joshua Pepper https://orcid.org/0000-0002-3827-8417
Jonathan Labadie-Bartz https://orcid.org/0000-0002-
2919-6786

Keivan G. Stassun https://orcid.org/0000-0002-3481-9052
B. Scott Gaudi https://orcid.org/0000-0003-0395-9869
Daniel Bayliss https://orcid.org/0000-0001-6023-1335
Dax Feliz https://orcid.org/0000-0002-2457-7889
Marshall C. Johnson https://orcid.org/0000-0002-
5099-8185
Michael B. Lund https://orcid.org/0000-0003-2527-1598
Matthew T. Penny https://orcid.org/0000-0001-7506-5640
Joseph E. Rodriguez https://orcid.org/0000-0001-
8812-0565
Robert J. Siverd https://orcid.org/0000-0001-5016-3359
Daniel J. Stevens https://orcid.org/0000-0002-5951-8328
Xinyu Yao https://orcid.org/0000-0003-4554-5592
George Zhou https://orcid.org/0000-0002-4891-3517
Thomas G. Beatty https://orcid.org/0000-0002-9539-4203
Allyson Bieryla https://orcid.org/0000-0001-6637-5401
Valerio Bozza https://orcid.org/0000-0003-4590-0136
Michael L. Calkins https://orcid.org/0000-0002-2830-5661
Jenna M. Cann https://orcid.org/0000-0003-1051-6564
William D. Cochran https://orcid.org/0000-0001-
9662-3496
Justin R. Crepp https://orcid.org/0000-0003-0800-0593
Courtney D. Dressing https://orcid.org/0000-0001-
8189-0233
Akihiko Fukui https://orcid.org/0000-0002-4909-5763
Benjamin J. Fulton https://orcid.org/0000-0003-3504-5316
Eric G. Hintz https://orcid.org/0000-0002-9867-7938
Hannah Jang-Condell https://orcid.org/0000-0002-
7639-1322
Eric L. N. Jensen https://orcid.org/0000-0002-4625-7333
David W. Latham https://orcid.org/0000-0001-9911-7388
Tiffany R. Lewis https://orcid.org/0000-0002-9854-1432
Dimitri Mawet https://orcid.org/0000-0002-8895-4735
Kim K. Mcleod https://orcid.org/0000-0001-9504-1486
Norio Narita https://orcid.org/0000-0001-8511-2981
Peter Plavchan https://orcid.org/0000-0002-8864-1667
Samuel N. Quinn https://orcid.org/0000-0002-8964-8377
Phillip A. Reed https://orcid.org/0000-0002-5005-1215
Joe P. Renaud https://orcid.org/0000-0002-8619-8542
Thiam-Guan Tan https://orcid.org/0000-0001-5603-6895
Steven Villanueva, Jr. https://orcid.org/0000-0001-
6213-8804

References

Alard, C. 2000, A&A, 144, 363
Alard, C., & Lupton, R. H. 1998, ApJ, 503, 325
Alonso, R., Brown, T. M., Torres, G., et al. 2004, ApJL, 613, L153
Alsubai, K. A., Parley, N. R., Bramich, D. M., et al. 2011, MNRAS, 417, 709
Bakos, G. Á, Csubry, Z., Penev, K., et al. 2013, PASP, 125, 154
Bakos, G. Á, Noyes, R. W., Kovács, G., et al. 2007, ApJ, 656, 552
Bayliss, D., Hartman, J. D., Zhou, G., et al. 2017, arXiv:1706.03858
Bayliss, D., Zhou, G., Penev, K., et al. 2013, ApJ, 146, 113
Berriman, G. B., & Good, J. C. 2017, PASP, 129, 058006
Bieryla, A., Collins, K., Beatty, T. G., et al. 2015, ApJ, 150, 12
Borucki, W. J., Koch, D., Basri, G., et al. 2010, Sci, 327, 977
Brown, T. M. 2003, ApJL, 593, L125
Burger, D., Stassun, K. G., Pepper, J., et al. 2013, A&C, 2, 40
Charbonneau, D., Brown, T. M., Dunham, E. W., et al. 2004, AIP Conf. Ser.

713, The Search for Other Worlds, ed. S. S. Holt & D. Deming (Melville,
NY: AIP), 151

Collier Cameron, A., Bruce, V. A., Miller, G. R. M., Triaud, A. H. M. J., &
Queloz, D. 2010, MNRAS, 403, 151

Collier Cameron, A., Wilson, D. M., West, R. G., et al. 2007, MNRAS,
380, 1230

Collins, K. A., Kielkopf, J. F., Stassun, K. G., & Hessman, F. V. 2017, AJ,
153, 77

74 http://archive.stsci.edu/dss/copyright.html

18

The Astronomical Journal, 156:234 (19pp), 2018 November Collins et al.

https://orcid.org/0000-0001-6588-9574
https://orcid.org/0000-0001-6588-9574
https://orcid.org/0000-0001-6588-9574
https://orcid.org/0000-0001-6588-9574
https://orcid.org/0000-0001-6588-9574
https://orcid.org/0000-0001-6588-9574
https://orcid.org/0000-0001-6588-9574
https://orcid.org/0000-0001-6588-9574
https://orcid.org/0000-0002-3827-8417
https://orcid.org/0000-0002-3827-8417
https://orcid.org/0000-0002-3827-8417
https://orcid.org/0000-0002-3827-8417
https://orcid.org/0000-0002-3827-8417
https://orcid.org/0000-0002-3827-8417
https://orcid.org/0000-0002-3827-8417
https://orcid.org/0000-0002-3827-8417
https://orcid.org/0000-0002-2919-6786
https://orcid.org/0000-0002-2919-6786
https://orcid.org/0000-0002-2919-6786
https://orcid.org/0000-0002-2919-6786
https://orcid.org/0000-0002-2919-6786
https://orcid.org/0000-0002-2919-6786
https://orcid.org/0000-0002-2919-6786
https://orcid.org/0000-0002-2919-6786
https://orcid.org/0000-0002-2919-6786
https://orcid.org/0000-0002-3481-9052
https://orcid.org/0000-0002-3481-9052
https://orcid.org/0000-0002-3481-9052
https://orcid.org/0000-0002-3481-9052
https://orcid.org/0000-0002-3481-9052
https://orcid.org/0000-0002-3481-9052
https://orcid.org/0000-0002-3481-9052
https://orcid.org/0000-0002-3481-9052
https://orcid.org/0000-0003-0395-9869
https://orcid.org/0000-0003-0395-9869
https://orcid.org/0000-0003-0395-9869
https://orcid.org/0000-0003-0395-9869
https://orcid.org/0000-0003-0395-9869
https://orcid.org/0000-0003-0395-9869
https://orcid.org/0000-0003-0395-9869
https://orcid.org/0000-0003-0395-9869
https://orcid.org/0000-0001-6023-1335
https://orcid.org/0000-0001-6023-1335
https://orcid.org/0000-0001-6023-1335
https://orcid.org/0000-0001-6023-1335
https://orcid.org/0000-0001-6023-1335
https://orcid.org/0000-0001-6023-1335
https://orcid.org/0000-0001-6023-1335
https://orcid.org/0000-0001-6023-1335
https://orcid.org/0000-0002-2457-7889
https://orcid.org/0000-0002-2457-7889
https://orcid.org/0000-0002-2457-7889
https://orcid.org/0000-0002-2457-7889
https://orcid.org/0000-0002-2457-7889
https://orcid.org/0000-0002-2457-7889
https://orcid.org/0000-0002-2457-7889
https://orcid.org/0000-0002-2457-7889
https://orcid.org/0000-0002-5099-8185
https://orcid.org/0000-0002-5099-8185
https://orcid.org/0000-0002-5099-8185
https://orcid.org/0000-0002-5099-8185
https://orcid.org/0000-0002-5099-8185
https://orcid.org/0000-0002-5099-8185
https://orcid.org/0000-0002-5099-8185
https://orcid.org/0000-0002-5099-8185
https://orcid.org/0000-0002-5099-8185
https://orcid.org/0000-0003-2527-1598
https://orcid.org/0000-0003-2527-1598
https://orcid.org/0000-0003-2527-1598
https://orcid.org/0000-0003-2527-1598
https://orcid.org/0000-0003-2527-1598
https://orcid.org/0000-0003-2527-1598
https://orcid.org/0000-0003-2527-1598
https://orcid.org/0000-0003-2527-1598
https://orcid.org/0000-0001-7506-5640
https://orcid.org/0000-0001-7506-5640
https://orcid.org/0000-0001-7506-5640
https://orcid.org/0000-0001-7506-5640
https://orcid.org/0000-0001-7506-5640
https://orcid.org/0000-0001-7506-5640
https://orcid.org/0000-0001-7506-5640
https://orcid.org/0000-0001-7506-5640
https://orcid.org/0000-0001-8812-0565
https://orcid.org/0000-0001-8812-0565
https://orcid.org/0000-0001-8812-0565
https://orcid.org/0000-0001-8812-0565
https://orcid.org/0000-0001-8812-0565
https://orcid.org/0000-0001-8812-0565
https://orcid.org/0000-0001-8812-0565
https://orcid.org/0000-0001-8812-0565
https://orcid.org/0000-0001-8812-0565
https://orcid.org/0000-0001-5016-3359
https://orcid.org/0000-0001-5016-3359
https://orcid.org/0000-0001-5016-3359
https://orcid.org/0000-0001-5016-3359
https://orcid.org/0000-0001-5016-3359
https://orcid.org/0000-0001-5016-3359
https://orcid.org/0000-0001-5016-3359
https://orcid.org/0000-0001-5016-3359
https://orcid.org/0000-0002-5951-8328
https://orcid.org/0000-0002-5951-8328
https://orcid.org/0000-0002-5951-8328
https://orcid.org/0000-0002-5951-8328
https://orcid.org/0000-0002-5951-8328
https://orcid.org/0000-0002-5951-8328
https://orcid.org/0000-0002-5951-8328
https://orcid.org/0000-0002-5951-8328
https://orcid.org/0000-0003-4554-5592
https://orcid.org/0000-0003-4554-5592
https://orcid.org/0000-0003-4554-5592
https://orcid.org/0000-0003-4554-5592
https://orcid.org/0000-0003-4554-5592
https://orcid.org/0000-0003-4554-5592
https://orcid.org/0000-0003-4554-5592
https://orcid.org/0000-0003-4554-5592
https://orcid.org/0000-0002-4891-3517
https://orcid.org/0000-0002-4891-3517
https://orcid.org/0000-0002-4891-3517
https://orcid.org/0000-0002-4891-3517
https://orcid.org/0000-0002-4891-3517
https://orcid.org/0000-0002-4891-3517
https://orcid.org/0000-0002-4891-3517
https://orcid.org/0000-0002-4891-3517
https://orcid.org/0000-0002-9539-4203
https://orcid.org/0000-0002-9539-4203
https://orcid.org/0000-0002-9539-4203
https://orcid.org/0000-0002-9539-4203
https://orcid.org/0000-0002-9539-4203
https://orcid.org/0000-0002-9539-4203
https://orcid.org/0000-0002-9539-4203
https://orcid.org/0000-0002-9539-4203
https://orcid.org/0000-0001-6637-5401
https://orcid.org/0000-0001-6637-5401
https://orcid.org/0000-0001-6637-5401
https://orcid.org/0000-0001-6637-5401
https://orcid.org/0000-0001-6637-5401
https://orcid.org/0000-0001-6637-5401
https://orcid.org/0000-0001-6637-5401
https://orcid.org/0000-0001-6637-5401
https://orcid.org/0000-0003-4590-0136
https://orcid.org/0000-0003-4590-0136
https://orcid.org/0000-0003-4590-0136
https://orcid.org/0000-0003-4590-0136
https://orcid.org/0000-0003-4590-0136
https://orcid.org/0000-0003-4590-0136
https://orcid.org/0000-0003-4590-0136
https://orcid.org/0000-0003-4590-0136
https://orcid.org/0000-0002-2830-5661
https://orcid.org/0000-0002-2830-5661
https://orcid.org/0000-0002-2830-5661
https://orcid.org/0000-0002-2830-5661
https://orcid.org/0000-0002-2830-5661
https://orcid.org/0000-0002-2830-5661
https://orcid.org/0000-0002-2830-5661
https://orcid.org/0000-0002-2830-5661
https://orcid.org/0000-0003-1051-6564
https://orcid.org/0000-0003-1051-6564
https://orcid.org/0000-0003-1051-6564
https://orcid.org/0000-0003-1051-6564
https://orcid.org/0000-0003-1051-6564
https://orcid.org/0000-0003-1051-6564
https://orcid.org/0000-0003-1051-6564
https://orcid.org/0000-0003-1051-6564
https://orcid.org/0000-0001-9662-3496
https://orcid.org/0000-0001-9662-3496
https://orcid.org/0000-0001-9662-3496
https://orcid.org/0000-0001-9662-3496
https://orcid.org/0000-0001-9662-3496
https://orcid.org/0000-0001-9662-3496
https://orcid.org/0000-0001-9662-3496
https://orcid.org/0000-0001-9662-3496
https://orcid.org/0000-0001-9662-3496
https://orcid.org/0000-0003-0800-0593
https://orcid.org/0000-0003-0800-0593
https://orcid.org/0000-0003-0800-0593
https://orcid.org/0000-0003-0800-0593
https://orcid.org/0000-0003-0800-0593
https://orcid.org/0000-0003-0800-0593
https://orcid.org/0000-0003-0800-0593
https://orcid.org/0000-0003-0800-0593
https://orcid.org/0000-0001-8189-0233
https://orcid.org/0000-0001-8189-0233
https://orcid.org/0000-0001-8189-0233
https://orcid.org/0000-0001-8189-0233
https://orcid.org/0000-0001-8189-0233
https://orcid.org/0000-0001-8189-0233
https://orcid.org/0000-0001-8189-0233
https://orcid.org/0000-0001-8189-0233
https://orcid.org/0000-0001-8189-0233
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0002-9867-7938
https://orcid.org/0000-0002-9867-7938
https://orcid.org/0000-0002-9867-7938
https://orcid.org/0000-0002-9867-7938
https://orcid.org/0000-0002-9867-7938
https://orcid.org/0000-0002-9867-7938
https://orcid.org/0000-0002-9867-7938
https://orcid.org/0000-0002-9867-7938
https://orcid.org/0000-0002-7639-1322
https://orcid.org/0000-0002-7639-1322
https://orcid.org/0000-0002-7639-1322
https://orcid.org/0000-0002-7639-1322
https://orcid.org/0000-0002-7639-1322
https://orcid.org/0000-0002-7639-1322
https://orcid.org/0000-0002-7639-1322
https://orcid.org/0000-0002-7639-1322
https://orcid.org/0000-0002-7639-1322
https://orcid.org/0000-0002-4625-7333
https://orcid.org/0000-0002-4625-7333
https://orcid.org/0000-0002-4625-7333
https://orcid.org/0000-0002-4625-7333
https://orcid.org/0000-0002-4625-7333
https://orcid.org/0000-0002-4625-7333
https://orcid.org/0000-0002-4625-7333
https://orcid.org/0000-0002-4625-7333
https://orcid.org/0000-0001-9911-7388
https://orcid.org/0000-0001-9911-7388
https://orcid.org/0000-0001-9911-7388
https://orcid.org/0000-0001-9911-7388
https://orcid.org/0000-0001-9911-7388
https://orcid.org/0000-0001-9911-7388
https://orcid.org/0000-0001-9911-7388
https://orcid.org/0000-0001-9911-7388
https://orcid.org/0000-0002-9854-1432
https://orcid.org/0000-0002-9854-1432
https://orcid.org/0000-0002-9854-1432
https://orcid.org/0000-0002-9854-1432
https://orcid.org/0000-0002-9854-1432
https://orcid.org/0000-0002-9854-1432
https://orcid.org/0000-0002-9854-1432
https://orcid.org/0000-0002-9854-1432
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0001-9504-1486
https://orcid.org/0000-0001-9504-1486
https://orcid.org/0000-0001-9504-1486
https://orcid.org/0000-0001-9504-1486
https://orcid.org/0000-0001-9504-1486
https://orcid.org/0000-0001-9504-1486
https://orcid.org/0000-0001-9504-1486
https://orcid.org/0000-0001-9504-1486
https://orcid.org/0000-0001-8511-2981
https://orcid.org/0000-0001-8511-2981
https://orcid.org/0000-0001-8511-2981
https://orcid.org/0000-0001-8511-2981
https://orcid.org/0000-0001-8511-2981
https://orcid.org/0000-0001-8511-2981
https://orcid.org/0000-0001-8511-2981
https://orcid.org/0000-0001-8511-2981
https://orcid.org/0000-0002-8864-1667
https://orcid.org/0000-0002-8864-1667
https://orcid.org/0000-0002-8864-1667
https://orcid.org/0000-0002-8864-1667
https://orcid.org/0000-0002-8864-1667
https://orcid.org/0000-0002-8864-1667
https://orcid.org/0000-0002-8864-1667
https://orcid.org/0000-0002-8864-1667
https://orcid.org/0000-0002-8964-8377
https://orcid.org/0000-0002-8964-8377
https://orcid.org/0000-0002-8964-8377
https://orcid.org/0000-0002-8964-8377
https://orcid.org/0000-0002-8964-8377
https://orcid.org/0000-0002-8964-8377
https://orcid.org/0000-0002-8964-8377
https://orcid.org/0000-0002-8964-8377
https://orcid.org/0000-0002-5005-1215
https://orcid.org/0000-0002-5005-1215
https://orcid.org/0000-0002-5005-1215
https://orcid.org/0000-0002-5005-1215
https://orcid.org/0000-0002-5005-1215
https://orcid.org/0000-0002-5005-1215
https://orcid.org/0000-0002-5005-1215
https://orcid.org/0000-0002-5005-1215
https://orcid.org/0000-0002-8619-8542
https://orcid.org/0000-0002-8619-8542
https://orcid.org/0000-0002-8619-8542
https://orcid.org/0000-0002-8619-8542
https://orcid.org/0000-0002-8619-8542
https://orcid.org/0000-0002-8619-8542
https://orcid.org/0000-0002-8619-8542
https://orcid.org/0000-0002-8619-8542
https://orcid.org/0000-0001-5603-6895
https://orcid.org/0000-0001-5603-6895
https://orcid.org/0000-0001-5603-6895
https://orcid.org/0000-0001-5603-6895
https://orcid.org/0000-0001-5603-6895
https://orcid.org/0000-0001-5603-6895
https://orcid.org/0000-0001-5603-6895
https://orcid.org/0000-0001-5603-6895
https://orcid.org/0000-0001-6213-8804
https://orcid.org/0000-0001-6213-8804
https://orcid.org/0000-0001-6213-8804
https://orcid.org/0000-0001-6213-8804
https://orcid.org/0000-0001-6213-8804
https://orcid.org/0000-0001-6213-8804
https://orcid.org/0000-0001-6213-8804
https://orcid.org/0000-0001-6213-8804
https://orcid.org/0000-0001-6213-8804
https://doi.org/10.1051/aas:2000214
http://adsabs.harvard.edu/abs/2000A&amp;AS..144..363A
https://doi.org/10.1086/305984
http://adsabs.harvard.edu/abs/1998ApJ...503..325A
https://doi.org/10.1086/425256
http://adsabs.harvard.edu/abs/2004ApJ...613L.153A
https://doi.org/10.1111/j.1365-2966.2011.19316.x
http://adsabs.harvard.edu/abs/2011MNRAS.417..709A
https://doi.org/10.1086/669529
http://adsabs.harvard.edu/abs/2013PASP..125..154B
https://doi.org/10.1086/509874
http://adsabs.harvard.edu/abs/2007ApJ...656..552B
http://arxiv.org/abs/1706.03858
https://doi.org/10.1088/0004-6256/146/5/113
http://adsabs.harvard.edu/abs/2013AJ....146..113B
https://doi.org/10.1088/1538-3873/aa5456
http://adsabs.harvard.edu/abs/2017PASP..129e8006B
https://doi.org/10.1088/0004-6256/150/1/12
http://adsabs.harvard.edu/abs/2015AJ....150...12B
https://doi.org/10.1126/science.1185402
http://adsabs.harvard.edu/abs/2010Sci...327..977B
https://doi.org/10.1086/378310
http://adsabs.harvard.edu/abs/2003ApJ...593L.125B
https://doi.org/10.1016/j.ascom.2013.06.002
http://adsabs.harvard.edu/abs/2013A&amp;C.....2...40B
http://adsabs.harvard.edu/abs/2004AIPC..713..151C
https://doi.org/10.1111/j.1365-2966.2009.16131.x
http://adsabs.harvard.edu/abs/2010MNRAS.403..151C
https://doi.org/10.1111/j.1365-2966.2007.12195.x
http://adsabs.harvard.edu/abs/2007MNRAS.380.1230C
http://adsabs.harvard.edu/abs/2007MNRAS.380.1230C
https://doi.org/10.3847/1538-3881/153/2/77
http://adsabs.harvard.edu/abs/2017AJ....153...77C
http://adsabs.harvard.edu/abs/2017AJ....153...77C
http://archive.stsci.edu/dss/copyright.html


Dopita, M., Hart, J., McGregor, P., et al. 2007, Ap&SS, 310, 255
Evans, T. M., & Sackett, P. D. 2010, ApJ, 712, 38
Fűrész, G., Szentgyorgyi, A. H., & Meibom, S. 2008, in Precision Spectroscopy

in Astrophysics, Proc. ESO/Lisbon/Aveiro Conf., ed. N. C. Santos
(Heidelberg: Springer), 287

Gould, A., & Morgan, C. W. 2003, ApJ, 585, 1056
Günther, M. N., Queloz, D., Gillen, E., et al. 2018, MNRAS, 478, 4720
Hartman, J. D., & Bakos, G. Á 2016, A&C, 17, 1
Høg, E., Fabricius, C., Makarov, V. V., et al. 2000, A&A, 355, L27
Jensen, E. 2013, Tapir: A Web Interface for Transit/eclipse Observability,

Astrophysics Source Code Library, ascl:1306.007
Kovács, G., Zucker, S., & Mazeh, T. 2002, A&A, 391, 369
Kuhn, R. B., Rodriguez, J. E., Collins, K. A., et al. 2016, MNRAS, 459, 4281
Latham, D. W., Bakos, G. Á, Torres, G., et al. 2009, ApJ, 704, 1107
Mandushev, G., Torres, G., Latham, D. W., et al. 2005, ApJ, 621, 1061
McCullough, P. R., Stys, J. E., Valenti, J. A., et al. 2005, PASP, 117, 783
Oberst, T. E., Rodriguez, J. E., Colón, K. D., et al. 2017, AJ, 153, 97
O’Donovan, F. T., Charbonneau, D., Bakos, G. Á, et al. 2007, ApJL, 663, L37
O’Donovan, F. T., Charbonneau, D., Torres, G., et al. 2006, ApJ, 644, 1237

Pepper, J., Gould, A., & Depoy, D. L. 2003, AcA, 53, 213
Pepper, J., Kuhn, R. B., Siverd, R., James, D., & Stassun, K. 2012, PASP,

124, 230
Pepper, J., Pogge, R. W., DePoy, D. L., et al. 2007, PASP, 119, 923
Pepper, J., Rodriguez, J. E., Collins, K. A., et al. 2017, AJ, 153, 215
Pollacco, D. L., Skillen, I., Collier Cameron, A., et al. 2006, PASP, 118,

1407
Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2014, Proc. SPIE, 9143, 20
Rouan, D., Baglin, A., Copet, E., et al. 1998, EM&P, 81, 79
Siverd, R. J., Beatty, T. G., Pepper, J., et al. 2012, ApJ, 761, 123
Siverd, R. J., Collins, K. A., Zhou, G., et al. 2018, AJ, 155, 35
Stassun, K. G., Oelkers, R. J., Pepper, J., et al. 2018, AJ, 156, 102
Sullivan, P. W., Winn, J. N., Berta-Thompson, Z. K., et al. 2015, ApJ, 809, 77
Szentgyorgyi, A. H., & Fűrész, G. 2007, RMxAC, 28, 129
Talens, G. J. J., Spronck, J. F. P., Lesage, A.-L., et al. 2017, A&A, 601, A11
Torres, G., Konacki, M., Sasselov, D. D., & Jha, S. 2004, ApJ, 614, 979
Triaud, A. H. M. J., Martin, D. V., Ségransan, D., et al. 2017, A&A, 608, A129
Wheatley, P. J., West, R. G., Goad, M. R., et al. 2017, arXiv:1710.11100
Zacharias, N., Finch, C. T., Girard, T. M., et al. 2013, ApJ, 145, 44

19

The Astronomical Journal, 156:234 (19pp), 2018 November Collins et al.

https://doi.org/10.1007/s10509-007-9510-z
http://adsabs.harvard.edu/abs/2007Ap&amp;SS.310..255D
https://doi.org/10.1088/0004-637X/712/1/38
http://adsabs.harvard.edu/abs/2010ApJ...712...38E
http://adsabs.harvard.edu/abs/2008psa..conf..287F
https://doi.org/10.1086/346131
http://adsabs.harvard.edu/abs/2003ApJ...585.1056G
https://doi.org/10.1093/mnras/sty1193
http://adsabs.harvard.edu/abs/2018MNRAS.478.4720G
https://doi.org/10.1016/j.ascom.2016.05.006
http://adsabs.harvard.edu/abs/2016A&amp;C....17....1H
http://adsabs.harvard.edu/abs/2000A&amp;A...355L..27H
http://www.ascl.net/1306.007
https://doi.org/10.1051/0004-6361:20020802
http://adsabs.harvard.edu/abs/2002A&amp;A...391..369K
https://doi.org/10.1093/mnras/stw880
http://adsabs.harvard.edu/abs/2016MNRAS.459.4281K
https://doi.org/10.1088/0004-637X/704/2/1107
http://adsabs.harvard.edu/abs/2009ApJ...704.1107L
https://doi.org/10.1086/427727
http://adsabs.harvard.edu/abs/2005ApJ...621.1061M
https://doi.org/10.1086/432024
http://adsabs.harvard.edu/abs/2005PASP..117..783M
https://doi.org/10.3847/1538-3881/153/3/97
http://adsabs.harvard.edu/abs/2017AJ....153...97O
https://doi.org/10.1086/519793
http://adsabs.harvard.edu/abs/2007ApJ...663L..37O
https://doi.org/10.1086/503740
http://adsabs.harvard.edu/abs/2006ApJ...644.1237O
http://adsabs.harvard.edu/abs/2003AcA....53..213P
https://doi.org/10.1086/665044
http://adsabs.harvard.edu/abs/2012PASP..124..230P
http://adsabs.harvard.edu/abs/2012PASP..124..230P
https://doi.org/10.1086/521836
http://adsabs.harvard.edu/abs/2007PASP..119..923P
https://doi.org/10.3847/1538-3881/aa6572
http://adsabs.harvard.edu/abs/2017AJ....153..215P
https://doi.org/10.1086/508556
http://adsabs.harvard.edu/abs/2006PASP..118.1407P
http://adsabs.harvard.edu/abs/2006PASP..118.1407P
https://doi.org/10.1117/12.2063489
http://adsabs.harvard.edu/abs/2014SPIE.9143E..20R
http://adsabs.harvard.edu/abs/1998EM&amp;P...81...79R
https://doi.org/10.1088/0004-637X/761/2/123
http://adsabs.harvard.edu/abs/2012ApJ...761..123S
https://doi.org/10.3847/1538-3881/aa9e4d
http://adsabs.harvard.edu/abs/2018AJ....155...35S
https://doi.org/10.3847/1538-3881/aad050
http://adsabs.harvard.edu/abs/2018AJ....156..102S
https://doi.org/10.1088/0004-637X/809/1/77
http://adsabs.harvard.edu/abs/2015ApJ...809...77S
http://adsabs.harvard.edu/abs/2007RMxAC..28..129S
https://doi.org/10.1051/0004-6361/201630319
http://adsabs.harvard.edu/abs/2017A&amp;A...601A..11T
https://doi.org/10.1086/423734
http://adsabs.harvard.edu/abs/2004ApJ...614..979T
https://doi.org/10.1051/0004-6361/201730993
http://adsabs.harvard.edu/abs/2017A&amp;A...608A.129T
http://arxiv.org/abs/1710.11100
https://doi.org/10.1088/0004-6256/145/2/44
http://adsabs.harvard.edu/abs/2013AJ....145...44Z

	The KELT Follow-Up Network And Transit False-Positive Catalog: Pre-Vetted False Positives For TESS
	Recommended Citation
	Authors

	1. Introduction
	2. The KELT Survey and Its Similarity to TESS
	2.1. Transit Identification
	2.1.1. Automated Detection of Transit Candidates
	2.1.2. Human Vetting of Transit Candidates


	3. The KELT Follow-up Network
	3.1. KELT-FUN Members and Follow-up Framework
	3.2. Follow-up Photometry
	3.2.1. Planning Photometric Observations
	3.2.2. Reduction and Submission of Follow-up Photometry
	3.2.3. Use and Analysis of Follow-up Photometry

	3.3. Reconnaissance Spectroscopic Vetting
	3.4. Confirmation and Final Vetting of Candidates

	4. The KELT False-positive Catalog
	4.1. False-positive Categories
	4.2. Information in the Catalog
	4.3. The Catalog Data

	5. Discussion
	6. Summary
	References

