47 research outputs found

    Snowpack fluxes of methane and carbon dioxide from high Arctic tundra

    Get PDF
    Measurements of the land-atmosphere exchange of the greenhouse gases methane (CH4) and carbon dioxide (CO2) in high Arctic tundra ecosystems are particularly difficult in the cold season, resulting in large uncertainty on flux magnitudes and their controlling factors during this long, frozen period. We conducted snowpack measurements of these gases at permafrost-underlain wetland sites in Zackenberg Valley (NE Greenland, 74°N) and Adventdalen Valley (Svalbard, 78°N), both of which also feature automatic closed chamber flux measurements during the snow-free period. At Zackenberg, cold season emissions were 1 to 2 orders of magnitude lower than growing season fluxes. Perennially, CH4 fluxes resembled the same spatial pattern, which was largely attributed to differences in soil wetness controlling substrate accumulation and microbial activity. We found no significant gas sinks or sources inside the snowpack but detected a pulse in the δ13C-CH4 stable isotopic signature of the soil's CH4 source during snowmelt, which suggests the release of a CH4 reservoir that was strongly affected by methanotrophic microorganisms. In the polygonal tundra of Adventdalen, the snowpack featured several ice layers, which suppressed the expected gas emissions to the atmosphere, and conversely lead to snowpack gas accumulations of up to 86 ppm CH4 and 3800 ppm CO2 by late winter. CH4 to CO2 ratios indicated distinctly different source characteristics in the rampart of ice-wedge polygons compared to elsewhere on the measured transect, possibly due to geomorphological soil cracks. Collectively, these findings suggest important ties between growing season and cold season greenhouse gas emissions from high Arctic tundra

    Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system

    Get PDF
    There is a significant knowledge gap in the current state of the terrestrial carbon (C) budget. Recent studies have highlighted a poor understanding particularly of C pool transit times and of whether productivity or biomass dominate these biases. The Arctic, accounting for approximately 50% of the global soil organic C stocks, has an important role in the global C cycle. Here, we use the CARbon DAta MOdel (CARDAMOM) data-assimilation system to produce pan-Arctic terrestrial C cycle analyses for 2000-2015. This approach avoids using traditional plant functional type or steady-state assumptions. We integrate a range of data (soil organic C, leaf area index, biomass, and climate) to determine the most likely state of the high-latitude C cycle at a 11 resolution and also to provide general guidance about the controlling biases in transit times. On average, CARDAMOM estimates regional mean rates of photosynthesis of 565 gCm2 yr1 (90% confidence interval between the 5th and 95th percentiles: 428, 741), autotrophic respiration of 270 g Cm2 yr1 (182, 397) and heterotrophic respiration of 219 g Cm2 yr1 (31, 1458), suggesting a pan-Arctic sink of 67 (287, 1160) gCm2 yr1, weaker in tundra and stronger in taiga. However, our confidence intervals remain large (and so the region could be a source of C), reflecting uncertainty assigned to the regional data products. We show a clear spatial and temporal agreement between CARDAMOM analyses and different sources of assimilated and independent data at both pan-Arctic and local scales but also identify consistent biases between CARDAMOM and validation data. The assimilation process requires clearer error quantification for leaf area index (LAI) and biomass products to resolve these biases. Mapping of vegetation C stocks and change over time and soil C ages linked to soil C stocks is required for better analytical constraint. Comparing CARDAMOM analyses to global vegetation models (GVMs) for the same period, we conclude that transit times of vegetation C are inconsistently simulated in GVMs due to a combination of uncertainties from productivity and biomass calculations. Our findings highlight that GVMs need to focus on constraining both current vegetation C stocks and net primary production to improve a process-based understanding of C cycledynamics in the Arctic

    Ecosystem-atmosphere interactions in the Arctic: using data-model approaches to understand carbon cycle feedbacks

    Get PDF
    The terrestrial CO2 exchange in the Arctic plays an important role in the global carbon (C) cycle. The Arctic ecosystems, containing a large amount of organic carbon (C), are experiencing ongoing warming in recent decades, which is affecting the C cycling and the feedback interactions between its different components. To improve our understanding of the atmosphere-ecosystem interactions, the Greenland Ecosystem Monitoring (GEM) program measures ecosystem CO2 exchange and links it to biogeochemical processes. However, this task remains challenging in northern latitudes due to an insufficient number of measurement sites, particularly covering full annual cycles, but also the frequent gaps in data affected by extreme conditions and remoteness. Combining ecosystem models and field observations we are able to study the underlying processes of Arctic CO2 exchange in changing environments. The overall aim of the research is to use data-model approaches to analyse the patterns of C exchange and their links to biological processes in Arctic ecosystems, studied in detail both from a measurement and a modelling perspective, but also from a local to a pan-arctic scale. In Paper I we found a compensatory response of photosynthesis (GPP) and ecosystem respiration (Reco), both highly sensitive to the meteorological drivers (i.e. temperatures and radiation) in Kobbefjord, West Greenland tundra. This tight relationship led to a relatively insensitive net ecosystem exchange (NEE) to the meteorology, despite the large variability in temperature and precipitations across growing seasons. This tundra ecosystem acted as a consistent sink of C (-30 g C m-2), except in 2011 (41 g C m-2), which was associated with a major pest outbreak. In Paper II we estimated this decrease of C sink strength of 118-144 g C m-2 in the anomalous year (2011), corresponding to 1210-1470 tonnes C at the Kobbefjord catchment scale. We concluded that the meteorological sensitivity of photosynthesis and respiration were similar, and hence compensatory, but we could not explain the causes. Therefore, in Paper III we used a calibrated and validated version of the Soil-Plant-Atmosphere model to explore full annual C cycles and detail the coupling between GPP and Reco. From this study we found two key results. First, similar metrological buffering to growing season reduced the full annual C sink strength by 60%. Second, plant traits control the compensatory effect observed (and estimated) between gross primary production and ecosystem respiration. Because a site-specific location is not representative of the entire Arctic, we further evaluated the pan-Arctic terrestrial C cycling using the CARDAMOM data assimilation system in Paper IV. Our estimates of C fluxes, pools and transit times are in good agreement with different sources of assimilated and independent data, both at pan-Arctic and local scale. Our benchmarking analysis with extensively used Global Vegetation Models (GVM) highlights that GVM modellers need to focus on the vegetation C dynamics, but also the respiratory losses, to improve our understanding of internal C cycle dynamics in the Arctic. Data-model approaches generate novel outputs, allowing us to explore C cycling mechanisms and controls that otherwise would not have been possible to address individually. Also, discrepancies between data and models can provide information about knowledge gaps and ecological indicators not previously detected from field observations, emphasizing the unique synergy that models and data are capable of bringing together

    Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF).

    Get PDF
    Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in sub-arctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies

    The Arctic plant aboveground biomass synthesis dataset

    Get PDF
    Abstract Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic

    The uncertain climate footprint of wetlands under human pressure

    Get PDF
    Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems,making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the “cost” of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse– response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange
    corecore