7 research outputs found

    Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans

    Get PDF
    Stereopsis, the perception of depth from small differences between the images in the two eyes, provides a rich model for investigating the cortical construction of surfaces and space. Although disparity-tuned cells have been found in a large number of areas in macaque visual cortex, stereoscopic processing in these areas has never been systematically compared using the same stimuli and analysis methods. In order to examine the global architecture of stereoscopic processing in primate visual cortex, we studied fMRI activity in alert, fixating human and macaque subjects. In macaques, we found strongest activation to near/far compared to zero disparity in areas V3, V3A, and CIPS. In humans, we found strongest activation to the same stimuli in areas V3A, V7, the V4d topolog (V4d-topo), and a caudal parietal disparity region (CPDR). Thus, in both primate species a small cluster of areas at the parieto-occipital junction appears to be specialized for stereopsis

    Faces and objects in macaque cerebral cortex

    No full text
    How are different object categories organized by the visual system? Current evidence indicates that monkeys and humans process object categories in fundamentally different ways. Functional magnetic resonance imaging (fMRI) studies suggest that humans have a ventral temporal face area, but such evidence is lacking in macaques. Instead, face-responsive neurons in macaques seem to be scattered throughout temporal cortex, with some relative concentration in the superior temporal sulcus (STS). Here, using fMRI in alert fixating macaque monkeys and humans, we found that macaques do have discrete face-selective patches, similar in relative size and number to face patches in humans. The face patches were embedded within a large swath of object-selective cortex extending from V4 to rostral TE. This large region responded better to pictures of intact objects compared to scrambled objects, with different object categories eliciting different patterns of activity, as in the human. Overall, our results suggest that humans and macaques share a similar brain architecture for visual object processing

    Stereopsis activates V3A and caudal intraparietal areas in macaques and humans

    No full text
    Stereopsis, the perception of depth from small differences between the images in the two eyes, provides a rich model for investigating the cortical construction of surfaces and space. Although disparity-tuned cells have been found in a large number of areas in macaque visual cortex, stereoscopic processing in these areas has never been systematically compared using the same stimuli and analysis methods. In order to examine the global architecture of stereoscopic processing in primate visual cortex, we studied fMRI activity in alert, fixating human and macaque subjects. In macaques, we found strongest activation to near/far compared to zero disparity in areas V3, V3A, and CIPS. In humans, we found strongest activation to the same stimuli in areas V3A, V7, the V4d topolog (V4d-topo), and a caudal parietal disparity region (CPDR). Thus, in both primate species a small cluster of areas at the parieto-occipital junction appears to be specialized for stereopsis.status: publishe
    corecore