102 research outputs found

    Evolution of gene order conservation in prokaryotes

    Get PDF
    BACKGROUND: As more complete genomes are sequenced, conservation of gene order between different organisms is emerging as an informative property of the genomes. Conservation of gene order has been used for predicting function and functional interactions of proteins, as well as for studying the evolutionary relationships between genomes. The reasons for the maintenance of gene order are still not well understood, as the organization of the prokaryote genome into operons and lateral gene transfer cannot possibly account for all the instances of conservation found. Comprehensive studies of gene order are one way of elucidating the nature of these maintaining forces. RESULTS: Gene order is extensively conserved between closely related species, but rapidly becomes less conserved among more distantly related organisms, probably in a cooperative fashion. This trend could be universal in prokaryotic genomes, as archaeal genomes are likely to behave similarly to bacterial genomes. Gene order conservation could therefore be used as a valid phylogenetic measure to study relationships between species. Even between very distant species, remnants of gene order conservation exist in the form of highly conserved clusters of genes. This suggests the existence of selective processes that maintain the organization of these regions. Because the clusters often span more than one operon, common regulation probably cannot be invoked as the cause of the maintenance of gene order. CONCLUSIONS: Gene order conservation is a genomic measure that can be useful for studying relationships between prokaryotes and the evolutionary forces shaping their genomes. Gene organization is extensively conserved in some genomic regions, and further studies are needed to elucidate the reason for this conservation

    Text Detective: a rule-based system for gene annotation in biomedical texts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of mentions of gene or gene products in biomedical texts is a critical step in the development of text mining applications in biosciences. The complexity and ambiguity of gene nomenclature makes this a very difficult task.</p> <p>Methods</p> <p>Here we present a novel approach based on a combination of carefully designed rules and several lexicons of biological concepts, implemented in the Text Detective system. Text Detective is able to normalize the results of gene mentions found by offering the appropriate database reference.</p> <p>Results</p> <p>In BioCreAtIvE evaluation, Text Detective achieved results of 84% precision, 71% recall for task 1A, and 79% precision, 71% recall for mouse genes in task 1B.</p

    Estimating the extent of horizontal gene transfer in metagenomic sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the extent of horizontal gene transfer (HGT) in complete genomes has been widely studied, its influence in the evolution of natural communities of prokaryotes remains unknown. The availability of metagenomic sequences allows us to address the study of global patterns of prokaryotic evolution in samples from natural communities. However, the methods that have been commonly used for the study of HGT are not suitable for metagenomic samples. Therefore it is important to develop new methods or to adapt existing ones to be used with metagenomic sequences.</p> <p>Results</p> <p>We have created two different methods that are suitable for the study of HGT in metagenomic samples. The methods are based on phylogenetic and DNA compositional approaches, and have allowed us to assess the extent of possible HGT events in metagenomes for the first time. The methods are shown to be compatible and quite precise, although they probably underestimate the number of possible events. Our results show that the phylogenetic method detects HGT in between 0.8% and 1.5% of the sequences, while DNA compositional methods identify putative HGT in between 2% and 8% of the sequences. These ranges are very similar to these found in complete genomes by related approaches. Both methods act with a different sensitivity since they probably target HGT events of different ages: the compositional method mostly identifies recent transfers, while the phylogenetic is more suitable for the detections of older events. Nevertheless, the study of the number of HGT events in metagenomic sequences from different communities shows a consistent trend for both methods: the lower amount is found for the sequences of the Sargasso Sea metagenome, while the higher quantity is found in the whale fall metagenome from the bottom of the ocean. The significance of these observations is discussed.</p> <p>Conclusion</p> <p>The computational approaches that are used to find possible HGT events in complete genomes can be adapted to work with metagenomic samples, where a level of high performance is shown in different metagenomic samples. The percentage of possible HGT events that were observed is close to that found for complete genomes, and different microbiomes show diverse ratios of putative HGT events. This is probably related with both environmental factors and the composition in the species of each particular community.</p

    The success (or not) of HUGO nomenclature

    Get PDF
    Current usage of gene nomenclature is ambiguous and impairs the efficient handling of scientific information. Therefore it is important to propose guidelines to deal with this problem. This study attempts to evaluate the success of HUGO nomenclature for human genes. The results indicate that HUGO guidelines are not supported by the scientific community

    SqueezeMeta, A Highly Portable, Fully Automatic Metagenomic Analysis Pipeline

    Get PDF
    The improvement of sequencing technologies has facilitated generalization of metagenomic sequencing, which has become a standard procedure for analyzing the structure and functionality of microbiomes. Bioinformatic analysis of sequencing results poses a challenge because it involves many different complex steps. SqueezeMeta is a fully automatic pipeline for metagenomics/metatranscriptomics, covering all steps of the analysis. SqueezeMeta includes multi-metagenome support that enables co-assembly of related metagenomes and retrieval of individual genomes via binning procedures. SqueezeMeta features several unique characteristics: co-assembly procedure or co-assembly of unlimited number of metagenomes via merging of individual assembled metagenomes, both with read mapping for estimation of the abundances of genes in each metagenome. It also includes binning and bin checking for retrieving individual genomes. Internal checks for the assembly and binning steps provide information about the consistency of contigs and bins. Moreover, results are stored in a MySQL database, where they can be easily exported and shared, and can be inspected anywhere using a flexible web interface that allows simple creation of complex queries. We illustrate the potential of SqueezeMeta by analyzing 32 gut metagenomes in a fully automatic way, enabling retrieval of several million genes and several hundreds of genomic bins. One of the motivations in the development of SqueezeMeta was producing a software capable of running in small desktop computers and thus amenable to all users and settings. We were also able to co-assemble two of these metagenomes and complete the full analysis in less than one day using a simple laptop computer. This reveals the capacity of SqueezeMeta to run without high-performance computing infrastructure and in absence of any network connectivity. It is therefore adequate for in situ, real time analysis of metagenomes produced by nanopore sequencing. SqueezeMeta can be downloaded from https://github.com/jtamames/SqueezeMeta

    The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic network of the TOL plasmid pWW0 of the soil bacterium <it>Pseudomonas putida </it>mt-2 for catabolism of <it>m-</it>xylene is an archetypal model for environmental biodegradation of aromatic pollutants. Although nearly every metabolic and transcriptional component of this regulatory system is known to an extraordinary molecular detail, the complexity of its architecture is still perplexing. To gain an insight into the inner layout of this network a logic model of the TOL system was implemented, simulated and experimentally validated. This analysis made sense of the specific regulatory topology out on the basis of an unprecedented network motif around which the entire genetic circuit for <it>m-</it>xylene catabolism gravitates.</p> <p>Results</p> <p>The most salient feature of the whole TOL regulatory network is the control exerted by two distinct but still intertwined regulators (XylR and XylS) on expression of two separated catabolic operons (<it>upper </it>and <it>lower</it>) for catabolism of <it>m</it>-xylene. Following model reduction, a minimal modular circuit composed by five basic variables appeared to suffice for fully describing the operation of the entire system. <it>In silico </it>simulation of the effect of various perturbations were compared with experimental data in which specific portions of the network were activated with selected inducers: <it>m-</it>xylene, <it>o-</it>xylene, 3-methylbenzylalcohol and 3-methylbenzoate. The results accredited the ability of the model to faithfully describe network dynamics. This analysis revealed that the entire regulatory structure of the TOL system enables the action an unprecedented metabolic amplifier motif (MAM). This motif synchronizes expression of the <it>upper </it>and <it>lower </it>portions of a very long metabolic system when cells face the head pathway substrate, <it>m-</it>xylene.</p> <p>Conclusion</p> <p>Logic modeling of the TOL circuit accounted for the intricate regulatory topology of this otherwise simple metabolic device. The found MAM appears to ensure a simultaneous expression of the <it>upper </it>and <it>lower </it>segments of the <it>m-</it>xylene catabolic route that would be difficult to bring about with a standard substrate-responsive single promoter. Furthermore, it is plausible that the MAM helps to avoid biochemical conflicts between competing plasmid-encoded and chromosomally-encoded pathways in this bacterium.</p

    Metagenomic analysis of an urban resistome before and after wastewater treatment

    Get PDF
    Determining the effect of wastewater treatment in water resistome is a topic of interest for water quality, mainly under re-use and One-Health perspectives. The resistome, the plasmidome, and the bacterial community composition of samples from influents and treated effluents from a wastewater treatment plant located in Northern Portugal were studied using metagenomic techniques. Wastewater treatment contributed to reduce the abundance of resistance genes and of plasmid replicons, coinciding with a decline in the number of intrinsic resistance genes from Enterobacteriaceae, as well as with a reduction in the relative abundance of Firmicutes and Proteobacteria after treatment. These taxons comprise bacterial pathogens, including those belonging to the ESKAPE group, which encompasses bacteria with the highest risk of acquiring antibiotic resistance, being the most relevant hosts of resistance genes acquired through horizontal gene transfer. Our results support that wastewater treatment efficiently removes the hosts of antibiotic resistance genes and, consequently, the harboured antibiotic resistance genes. Principal component analysis indicates that the resistome and the bacterial composition clustered together in influent samples, while did not cluster in final effluent samples. Our results suggest that wastewater treatment mitigates the environmental dissemination of urban resistome, through the removal of the hosts harbouring mobile resistance genes.info:eu-repo/semantics/publishedVersio

    The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial symbioses are widespread among insects. The early establishment of such symbiotic associations has probably been one of the key factors for the evolutionary success of insects, since it may have allowed access to novel ecological niches and to new imbalanced food resources, such as plant sap or blood. Several genomes of bacterial endosymbionts of different insect species have been recently sequenced, and their biology has been extensively studied. Recently, the complete genome sequence of <it>Candidatus </it>Carsonella ruddii, considered the primary endosymbiont of the psyllid <it>Pachpsylla venusta</it>, has been published. This genome consists of a circular chromosome of 159,662 bp and has been proposed as the smallest bacterial endosymbiont genome known to date.</p> <p>Results</p> <p>The detailed analysis of the gene content of <it>C. ruddii </it>shows that the extensive degradation of the genome is not compatible with its consideration as a mutualistic endosymbiont and, even more, as a living organism. The ability to perform most essential functions for a cell to be considered alive is heavily impaired by the lack of genes involved in DNA replication, transcription and translation. Furthermore, the shortening of genes causes, in some cases, the loss of essential domains and functional residues needed to fulfill such vital functions. In addition, at least half of the pathways towards the biosynthesis of essential amino acids, its proposed symbiotic function, are completely or partially lost.</p> <p>Conclusion</p> <p>We propose that this strain of <it>C. ruddii </it>can be viewed as a further step towards the degeneration of the former primary endosymbiont and its transformation in a subcellular new entity between living cells and organelles. Although the transition of genes from <it>C. ruddii </it>to the host nucleus has been proposed, the amount of genes that should have been transferred to the germinal line of the insect would be so big that it would be more plausible to consider the implication of the mitochondrial machinery encoded in the insect nucleus. Furthermore, since most genes for the biosynthesis of essential amino acids have also been lost, it is likely that the host depends on another yet unidentified symbiont to complement its deficient diet.</p

    Effect of water T2 shortening in the quantification of in-vitro proton MR spectroscopy

    Get PDF
    Short communication[Abstract] PURPOSE. This work studies the relationship between in-vitro Proton Magnetic Resonance Spectroscopy metabolite quantification and water T2 decay. MATERIALS AND METHODS. An in-vitro correspondence is established between the iron accumulation and the shortening of water T2 relaxation times using seven spherical phantoms, 6 of them were doped with an increasing concentration of iron metal nanoparticles solution. This is later proposed as a source of error during the LCModel metabolite quantification of either absolute concentrations or ratios. RESULTS. The Pearson's correlation coefficient between water T2 values against absolute metabolite concentrations was on average [r] = 0.97 and on average [r] = 0.85 for metabolite ratios. CONCLUSION. These results suggest that the shortening of T2 values should be taken into account when performing metabolite quantification. Also, the need of demonstrated similar results in in-vivo studies, since the presence of iron deposits or other factors affecting the water T2 decay measurements could explain part of the inter-subject variability in the metabolite concentration and ratio quantification
    corecore