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The improvement of sequencing technologies has facilitated generalization of
metagenomic sequencing, which has become a standard procedure for analyzing the
structure and functionality of microbiomes. Bioinformatic analysis of sequencing results
poses a challenge because it involves many different complex steps. SqueezeMeta is a
fully automatic pipeline for metagenomics/metatranscriptomics, covering all steps of the
analysis. SqueezeMeta includes multi-metagenome support that enables co-assembly
of related metagenomes and retrieval of individual genomes via binning procedures.
SqueezeMeta features several unique characteristics: co-assembly procedure or co-
assembly of unlimited number of metagenomes via merging of individual assembled
metagenomes, both with read mapping for estimation of the abundances of genes in
each metagenome. It also includes binning and bin checking for retrieving individual
genomes. Internal checks for the assembly and binning steps provide information about
the consistency of contigs and bins. Moreover, results are stored in a MySQL database,
where they can be easily exported and shared, and can be inspected anywhere using
a flexible web interface that allows simple creation of complex queries. We illustrate
the potential of SqueezeMeta by analyzing 32 gut metagenomes in a fully automatic
way, enabling retrieval of several million genes and several hundreds of genomic bins.
One of the motivations in the development of SqueezeMeta was producing a software
capable of running in small desktop computers and thus amenable to all users and
settings. We were also able to co-assemble two of these metagenomes and complete
the full analysis in less than one day using a simple laptop computer. This reveals the
capacity of SqueezeMeta to run without high-performance computing infrastructure and
in absence of any network connectivity. It is therefore adequate for in situ, real time
analysis of metagenomes produced by nanopore sequencing. SqueezeMeta can be
downloaded from https://github.com/jtamames/SqueezeMeta.
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INTRODUCTION

The improvement of sequencing technologies has permitted the
generalization of metagenomic sequencing, which has become
standard procedure for analyzing the structure and functionality
of microbiomes. Many novel bioinformatic tools and approaches
have been developed to deal with the vast numbers of short
read sequences produced by a metagenomic experiment. Aside
from the simply overwhelming amount of data, a metagenomic
analysis is a complex task comprising several non-standardized
steps, involving different software tools whose results are often
not directly compatible.

Lately, the development of highly portable sequencers,
especially those based on nanopore technologies (Deamer et al.,
2016), has facilitated in situ sequencing in scenarios where the
need to obtain quick results is paramount, for instance clinical
scenarios of disease control or epidemics (Quick et al., 2015,
2016). Metagenomic sequencing has also been performed in situ,
for instance in oceanographic expeditions in the Antarctic ice
(Lim et al., 2014; Johnson et al., 2017), illustrating the growing
capability of producing sequences right away in sampling
campaigns. This will enable informed planning of upcoming
sampling experiments according to the results found in previous
days. We foresee that this kind of application will be increasingly
used in the near future. Therefore, bioinformatic analysis should
be performed in a very short time span (hours), and be amenable
to lightweight computing infrastructure.

A standard metagenomic pipeline involves read curation,
assembly, gene prediction, and functional and taxonomic
annotation of the resulting genes. Several pipelines have been
created to automate most of these analyses (Li, 2009; Arumugam
et al., 2010; Glass and Meyer, 2011; Abubucker et al., 2012;
Eren et al., 2015; Kim et al., 2016). However, they differ in
terms of capacities and approaches. One of the most important
differences is whether or not the assembly step is needed. Some
platforms skip assembly and, consequently, gene prediction and
rely instead on direct annotation of the raw reads. Nevertheless,
there are several drawbacks of working with raw reads: since
this is based on homology searches for millions of sequences
against huge reference databases, it usually requires very large
CPU usage. Especially for taxonomic assignment, the reference
database must be as complete as possible to minimize errors
(Pignatelli et al., 2008). Furthermore, sequences are often too
short to produce accurate assignments (Wommack et al., 2008;
Carr and Borenstein, 2014).

Assembly, however, is advisable because it can recover larger
fragments of genomes, often comprising many genes. Having the
complete sequence of a gene and its context makes its functional
and taxonomic assignment much easier and more reliable. The
drawback of assembly is the formation of chimeras because
of misassembling parts of different genomes, and the inability
to assemble some of the reads, especially the ones from low-
abundance species. The fraction of non-assembled reads depends
on several factors, especially sequencing depth and microbiome
diversity, but it is usually low (often below 20%). Recently, some
tools have been developed to reassemble the portion of reads
not assembled in the first instance, increasing the performance

of this step (Hitch and Creevey, 2018). Co-assembling related
metagenomes can also alleviate this problem significantly, as we
will illustrate in the results section.

Assembly is also advisable because it facilitates the recovery
of quasi-complete genomes via binning methods. The retrieval of
genomes is a major step forward in the study of a microbiome,
since it enables linking organisms and functions, thereby
contributing to a much more accurate ecologic description of the
community’s functioning. It is possible, for instance, to determine
the key members of the microbiome (involved in particularly
important functions), to infer potential interactions between
members (for instance, looking for metabolic complementation),
and to advance in the understanding of the effect of ecologic
perturbations.

The best strategy for binning is co-assembly of related
metagenomes. By comparing the abundance and composition of
the contigs in different samples, it is possible to determine which
contigs belong to the same organism: these contigs have similar
oligonucleotide composition, similar abundances in individual
samples, and a co-varying pattern between different samples. In
this way, it is possible to retrieve tens or hundreds of genomic
bins with different levels of completion that can be used as the
starting point for a more in-depth analysis of the microbiome’s
functioning.

SqueezeMeta is a fully automatic pipeline for
metagenomics/metatranscriptomics, covering all steps of
the analysis. It includes multi-metagenome support allowing co-
assembly of related metagenomes and the retrieval of individual
genomes via binning procedures.

A comparison of the capabilities of SqueezeMeta and other
pipelines is shown in Table 1. Most current pipelines do
not include support for co-assembling and binning, while
some permit importing external binning results to display the
associated information.

SqueezeMeta offers several advanced characteristics that make
it different to existing pipelines, for instance:

1. Co-assembly procedure coupled with read mapping for the
estimation of the abundances of individual genes in each
metagenome.

2. An alternative co-assembly approach enabling the
processing of an unlimited number of metagenomes via
merging of individual metagenomes.

3. Support for nanopore long reads.
4. Binning and bin checking for retrieving individual

genomes.
5. Internal checks for the taxonomic annotation of contigs and

bins.
6. Metatranscriptomic support via mapping of cDNA reads

against reference metagenomes, or via co-assembly of
metagenomes and metatranscriptomes.

7. Inclusion of MySQL database for storing results, where they
can be easily exported and shared and inspected anywhere
using a web interface.

We have designed SqueezeMeta to be able to run in scarce
computer resources, as expected for in situ metagenomic
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TABLE 1 | Features of different metagenomic analysis pipelines, in comparison to SqueezeMeta.

MG-
Rast
(Meyer
et al.,
2008)

Anvio
(Eren
et al.,
2015)

Smash
community
(Arumugam
et al.,
2010)

Humann
(Abubucker
et al.,
2012)

fmap
(Kim
et al.,
2016)

MetaWrap
(Uritskiy
et al.,
2018)

Samsa2
(Westreich
et al.,
2018)

IMP
(Narayanasamy
et al.,
2016)

Squeeze
Meta

Assembly No No Yes No No Yes No Yes Yes

Data
source

Reads
or
contigs

Contigs Contigs Reads Reads
or
contigs

Contigs Reads
(RNA)

Reads Reads

Gene
prediction

Yes Yes Yes No No No No Yes Yes

Function
assignment

Yes Yes Yes Yes Yes No Yes Yes Yes

RNA
assignment

Yes Yes No No No No Yes Yes Yes

Taxonomic
assignment

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Gene
abundances

Yes Yes No Yes Yes No Yes Yes Yes

Metagomic
comparison

Yes Yes Yes Yes Yes No Yes Yes Yes

Co-
assembly

No No No No No Yes No Yes Yes

Binning No Support No No No Yes No Yes Yes

Bin
validation

No Yes No No No No No No Yes

Local
Installation

No Yes Yes Yes Yes Yes Yes Yes Yes

sequencing experiments. By adequately setting all the pipeline’s
components, we were able to fully analyze completely individual
metagenomes and even co-assemble related metagenomes using
a desktop computer with only 16 GB RAM. The fully automatic
nature of our system, not requiring any technical or bioinformatic
knowledge, also makes it very easy to use. It is also completely
independent of the availability of any Internet connection.

SqueezeMeta can be downloaded from https://github.com/
jtamames/SqueezeMeta.

MATERIALS AND METHODS

SqueezeMeta is aimed to perform the analysis of several
metagenomes in a single run. It can be run in three different
modes (for a schematic workflow for the three modes, see
Figure 1). These are:

1. Sequential mode: all metagenomes are treated individually
and analyzed sequentially. This mode does not include
binning, since each metagenome is treated independently.

2. Co-assembly mode: reads from all samples are pooled and
a single assembly is performed. Reads from individual
samples are then mapped back to the co-assembly, which
enables obtaining the coverage of contigs and individual
genes in these contigs. Based on these abundances,
subsequent binning methods allow classifying contigs in
genomic bins.

3. Merged mode: co-assembly is a very intensive process
that requires plenty of computational resources, especially
RAM. If the number of samples is high, requirements
can easily exceed the capabilities of the computing
infrastructure. SqueezeMeta’s merged mode permit
co-assembly of a large number of samples, using a
procedure similar to the one used in the analysis of
TARA Oceans metagenomes (Tully et al., 2018). Samples
are first assembled individually. The resulting sets of
contigs are merged by combining contigs with ≥99%
semi-global identity, using CD-HIT (Fu et al., 2012).
Then the remaining contigs are re-assembled using
Minimus2 (Treangen et al., 2011) with parameters -D
OVERLAP = 100 MINID = 95, to look for overlapping
contigs coming from pieces of the same genome in different
samples. The merging produces a single set of contigs, and
the analysis proceeds as in the co-assembly mode.

SqueezeMeta uses a combination of custom scripts and
external software packages for the different steps of the analysis.
A more detailed description of these steps follows:

Data Preparation
A SqueezeMeta run only requires a configuration file indicating
the metagenomic samples and the location of their corresponding
sequence files. The program creates the appropriate directories
and prepares the data for further steps.
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FIGURE 1 | Workflow of the three modes of operation of SqueezeMeta:
sequential, co-assembly and merged. Starting from metagenomic samples,
green, blue and red arrows indicate main steps in sequential, merged and
co-assembly modes. All modes create two of the three main results tables:
ORF and contig tables. Co-assembly and merged modes also apply binning
and, therefore, they also create the bin table.

Trimming and Filtering
SqueezeMeta uses Trimmomatic for adapter removal, trimming
and filtering by quality, according to the parameters set by the
user (Bolger et al., 2014).

Assembly
When assembling large metagenomic datasets, computing
resources, especially memory usage, are critical. SqueezeMeta
uses Megahit (Li et al., 2015) as its reference assembler, since we
find it has an optimal balance between performance and memory
usage. SPAdes (Bankevich et al., 2012) is also supported. For
assembly of the long, error-prone MinION reads, we use Canu
(Koren et al., 2017). The user can select any of these assemblers. In
the merged mode, each metagenome will be assembled separately
and the resulting contigs will be merged and joined as outlined
above. Either way, the resulting set of contigs is filtered by length
using prinseq (Schmieder and Edwards, 2011), to discard short
contigs if required.

Gene and rRNA Prediction
This step uses the Prodigal gene prediction software (Hyatt et al.,
2010) to perform a gene prediction on the contigs, retrieving the
corresponding amino acid sequences, and looks for rRNAs using
barrnap (Seemann, 2014). The resulting 16S rRNA sequences are
classified using the RDP classifier (Wang et al., 2007).

Homology Searching
SqueezeMeta uses the Diamond software (Buchfink et al., 2015)
for comparison of gene sequences against several taxonomic and
functional databases, because of its optimal computation speed
while maintaining sensitivity. Currently, three different Diamond
runs are performed: against the GenBank nr database for
taxonomic assignment, against the eggNOG database (Huerta-
Cepas et al., 2016) for COG/NOG annotation, and against the
latest publicly available version of KEGG database (Kanehisa and
Goto, 2000) for KEGG ID annotation. SqueezeMeta also classifies
genes against the PFAM database (Finn et al., 2014), using
HMMER3 (Eddy, 2009). These databases are installed locally and
updated at the user’s request.

Taxonomic Assignment of Genes
Custom scripts are used for this step of the analysis. For
taxonomic assignment, SqueezeMeta implements a fast LCA
algorithm that looks for the last common ancestor of the hits for
each query gene using the results of the Diamond search against
GenBank nr database (the most complete reference database
available). For each query sequence, we select a range of hits
having at least 80% of the bit-score of the best hit and differing
by less than 10% of its identity percentage. The LCA is the lower
rank taxon common to most hits, since a small number of hits
belonging to other taxa are allowed to add resilience against, for
instance, annotation errors. Importantly, our algorithm includes
strict cut-off identity values for the various taxonomic ranks.
This means that hits must pass a minimum amino acid identity
level to be used for assigning to a particular taxonomic rank.
These thresholds are 85, 60, 55, 50, 46, 42, and 40% for species,
genus, family, order, class, phylum, and superkingdom ranks,
respectively (Luo et al., 2014). Hits below these identity levels
cannot be used to make assignments to the corresponding rank.
For instance, a protein will not be assigned to species level if it
has no hits above 85% identity. Moreover, a protein will remain
unclassified if it has no hits above 40% identity. Inclusion of these
thresholds guarantees that no assignments are performed based
on weak, inconclusive hits.

Functional Assignments
Genes in COGs and KEGG IDs can be annotated using
the classical best hit approach or a more sensitive one
considering the consistency of all hits (Supplementary Methods
in Supplementary File S1). In short, the first hits exceeding
an identity threshold for each COG or KEGG are selected.
Their bitscores are averaged, and the ORF is assigned to the
highest-scoring COG or KEGG whose score exceeds the score
of any other by 20%, otherwise the gene remains unannotated.
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This procedure does not annotate conflicting genes with close
similarities to more than one protein family.

Taxonomic Assignment of Contigs and
Disparity Check
The taxonomic assignments of individual genes are used to
produce consensus assignments for the contigs. A contig is
annotated to the taxon to which most of their genes belong
(Supplementary File S1). The required percentage of genes
assigned to that taxon can be set by the user, so that it is possible
to accommodate missing or incorrect annotations of a few genes,
recent HGT events, etc. A disparity score is computed for each
contig, indicating how many genes do not concur with the
consensus (Supplementary File S1). Contigs with high disparity
could be flagged to be excluded from subsequent analyses.

Coverage and Abundance Estimation for
Genes and Contigs
To estimate the abundance of each gene and each contig in each
sample, SqueezeMeta relies on mapping of original reads onto
the contigs resulting from the assembly. The software Bowtie2
(Langmead and Salzberg, 2012) is used for this task, but we
also included Minimap2 (Li, 2018) for mapping long MinION
reads. This is followed by Bedtools (Quinlan and Hall, 2010) for
extraction of the raw number of reads and bases mapping to each
gene and contig. Custom scripts are used to compute the average
coverage and normalized RPKM values that provide information
on gene and contig abundance.

In sequential mode, SqueezeMeta would stop here. Any of
the co-assembly modes allow binning the contigs for delineating
genomes.

Binning
Using the previously obtained contig coverage in different
samples, SqueezeMeta uses different binning methods to separate
contigs putatively coming from the same organism. Basically,
binning algorithms classify contigs coming from the same
genomes because their coverages covary along the samples, and
their oligonucleotide composition is similar. Currently, Maxbin
(Wu et al., 2015) and Metabat2 (Kang et al., 2015) are supported.
In addition, SqueezeMeta includes DAS Tool (Sieber et al., 2018)
to merge the multiple binning results in just one set.

SqueezeMeta calculates average coverage and RPKM values
for the bins in the same way as above, mapping reads to the
contigs belonging to the bin.

Taxonomic Assignment of Bins and
Consistency Check
SqueezeMeta generates a consensus taxonomic assignment for
the bins in the same way as it did for the contigs. A bin is
annotated to the consensus taxon, that is, the taxon to which most
of its contigs belong. As previously, a disparity score is computed
for each bin, indicating how many of the contigs are discordant
with the bin’s consensus taxonomic assignment. This can be used
as an initial measure of the bin’s possible contamination.

Bin Check
The goodness of the bins is estimated using the CheckM software
(Parks et al., 2015). In short, CheckM provides indications of
a bin’s completeness, contamination and strain heterogeneity
by creating a profile of single-copy, conserved genes for the
given taxon and evaluating how many of these genes were found
(completeness), and how many were single-copy (contamination
and strain heterogeneity). SqueezeMeta automates CheckM runs
for each bin, using the consensus annotation for the bin as the
suggested taxonomic origin.

Merging of Results
Finally, the system merges all these results and generates several
tables: (1) a gene table, with all the information regarding
genes (taxonomy, function, contig and bin origin, abundance in
samples, and amino acid sequence). (2) A contig table, gathering
all data for the contigs (taxonomy, bin affiliation, abundance in
samples, and disparity), and (3) A bin table with all information
related to the bins (taxonomy, completeness, contamination,
abundance in samples, and disparity).

Database Creation
These three tables and the optional metadata will be used to create
a MySQL database for easy inspection of the data arising from the
analysis. The database includes a web-based user interface that
enables easy creation of queries, so that the user does not need to
have any knowledge on database usage to operate it (Figure 2).
The interface allows queries on one table (genes, contigs or
bins) or combinations of tables, enabling complex questions
such as “Retrieve contigs having genes related to trehalose from
Bacteroidetes more abundant than 5x coverage in sample X” or
“Retrieve antibiotic resistance genes active in one condition but
not in another”. The resulting information can be exported to a
table.

When combining metagenomes and metatrancriptomes, the
latter can be analyzed in a straightforward way by just mapping
the cDNA reads against the reference metagenomes. In this way,
we can obtain and compare the abundances of the same genes
in both the metagenome and the metatranscriptome. However,
this will obviate these genes present only in the latter, for
instance genes belonging to rare species in the metagenome
(therefore unassembled) and that happen to be very active.
SqueezeMeta can deal with this situation using the merged mode.
Metagenomes and metatranscriptomes are assembled separately
and then merged so that contigs can come from DNA from
the metagenome, cDNA from the metatranscriptome or both.
Normalization of read counts makes it possible to compare
presence and expression values within or between different
samples.

RESULTS

To illustrate the use of the SqueezeMeta software, we analyzed
32 metagenomic samples corresponding to gut microbiomes of
Hadza and Italian subjects (Rampelli et al., 2015), using the three
modes of analysis. The total number of reads for all metagenomes
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FIGURE 2 | Snapshot of the SqueezeMeta user interface to its database. A flexible and intuitive system for building queries allows interrogating the database with
complex questions involving combination of data from different tables.

FIGURE 3 | Results of the application of SqueezeMeta to 32 gut metagenomes of Hadza (H) and Italian (IT) subjects. The figure shows the size of the metagenomes
and the number of genes obtained by the three modes of analysis.

is 829.163.742. We used a 64-CPU computer cluster with 756 GB
RAM in the National Center for Biotechnology, Madrid, Spain.
After discarding contigs below 200 bps, the total number of
genes was 4,613,697, 2,401,848, and 2,230,717 for the sequential,

merged and co-assembled modes, respectively. Notice that the
number of genes is lower in the two latter modes that involve co-
assembly since the genes present in more than one metagenome
will be counted just once in the co-assembly (they are represented
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by just one contig product of the co-assembly) but more than
once in the individual samples (they are present in one different
contig per sample). A more accurate comparison is shown in
Figure 3, where a gene in the co-assembly is assumed to be
present in a given sample if it can recruit some reads from
that sample. As co-assemblies create a much larger reference
collection of contigs than individual metagenomes alone, even
genes represented by a few reads in a sample can be identified
by recruitment, while they will probably fail to assemble in
the individual metagenome because of their low abundance. In
other words, co-assembly will produce contigs and genes from
abundant taxa in one or more samples, that can be used to
identify the presence of the same genes in samples in which
these original taxa are rare. Therefore, it enables discovering the
presence of many more genes in each sample.

The improvement of gene recovery for the smaller samples is
also noticeable by the percentage of mapped reads. The individual
assembly for small samples achieves barely 35% of read mapping
to the assembled metagenome, indicating that most reads could
not be used. The small size (and therefore low coverage) of the
metagenome prevented these reads from being assembled. When
co-assembling these samples with the rest, more than 85% of
the reads could then be mapped to the reference metagenome,

TABLE 2 | Statistics on contigs and bins for the three SqueezeMeta modes on
Hadza & Italian metagenomes.

Merged mode Co-assembly
mode

Sequential mode

Number of contigs 893,438 983,350 2,478,560

N50 3900 2357 2854

Average
percentage of
mapped reads

85.01 89.47 74.47

Contigs with
phylum annotation

719,098 (80.4%) 759,903 (77.2%) 1,951,445 (78.7%)

Contigs with
disparity > 0

6626 (0.7%) 3772 (0.4%) 7588 (0.3%)

Highly inconsistent
contigs
(disparity > 0.25)

4496 (0.5%) 2993 (0.3%) 5433 (0.2%)

Number of genes 2,401,848 2,230,717 4,613,697

Genes with COG
function

1,098,635 (45.7%) 982,029 (44.0%) 2,164,980 (46.9%)

Genes with KEGG
function

835,498 (34.8%) 749,892 (33.6%) 1,683,636 (36.5%)

Total bins 563 423 N/A

Bins > 90%
complete

120 115 N/A

Bins > 50%
complete

359 192 N/A

High-quality bins
(>90% complete,
<10% contam)

50 67 N/A

Good quality bins
(>75% complete,
<10% contam)

82 112 N/A

Binning statistics refer to MaxBin results.

indicating that co-assembly is able to capture most of the diversity
found in these small samples.

Table 2 shows the characteristics of the analysis. Even if
the merged mode obtains more contigs and genes than the
co-assembly mode, we can see that the number of putatively
inconsistent contigs (having genes annotated to different taxa) is
lower in the second. Therefore, the co-assembly mode is more
accurate than the merged mode, but the latter has the advantage
of being able to work with an almost unlimited number of
metagenomes because of its lower requirements.

Binning results have been analyzed according to the
completeness and contamination values provided by CheckM
(Table 3). Again, there are differences between the merged and
the co-assembly modes, with the first providing more but less
complete bins, and the latter giving bins of higher quality. Both
modes are capable of obtaining quasi-complete genomes for tens
of species, and hundreds of less complete genomes.

Figure 4 shows the abundance distribution of bins in
samples. Italian subjects reveal a clear distinctive profile that
make them cluster together. Bins belonging to the genera
Bacteoides and Faecalibacterium are more abundant in these
individuals than in Hadza individuals. The Hadza have increased
diversity and fall into different groups corresponding to the
presence of diverse species, in accordance with the distinctions
found using functional profiles (Rampelli et al., 2015). The
microbiota of these individuals contains genera such as
Allistipes or Prevotella not present in the Italian metagenomes.
Moreover, Spirochaetes from the genera Treponema are only
present in Hadza subjects, which are supposedly not associated
with pathogenesis. This information is directly retrieved from
SqueezeMeta results and offers a revealing view of the genomic
composition and differences between the samples. A similar
result can be obtained for the functional annotations. The
original functions represented in the bins can be used to
infer the presence of metabolic pathways using the MinPath

TABLE 3 | Example of some relevant high-quality bins (>90% completion, <10%
contamination) obtained by the co-assembly mode of Hadza & Italian
metagenomes.

Taxa Size (bp) Completeness Contamination

o: Clostridiales 3,098,646 99.53% 3.57%

g: Bacteroides 3,521,779 99.45% 0.18%

o: Aeromonadales 2,579,625 99.16% 0.69%

g: Akkermansia 3,031,328 98.94% 4.31%

g: Treponema 2,879,091 98.62% 4.78%

g: Prevotella 3,354,102 97.51% 0.47%

s: Escherichia coli 4,710,119 97.49% 6.01%

g: Bifidobacterium 2,266,937 97.40% 3.70%

g: Megasphaera 2,490,127 96.93% 2.88%

s: Succinatimonas sp. 2,250,348 96.61% 4.22%

g: Parabacteroides 4,558,677 96.57% 3.18%

s: Alistipes putredinis 2,258,860 95.28% 5.77%

s: Oscillibacter sp. 1,801,182 95.11% 4.20%

s: Bacteroides sp. 3,901,726 95.08% 7.76%

Taxa are labeled according to their taxonomic rank. g, Genus; o, Order; s, Species.
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FIGURE 4 | Abundance of bins in the diverse samples. Bins were compared with the CompareM software (https://github.com/dparks1134/CompareM) to estimate
their reciprocal similarities. The distances calculated between the bins were used to create a phylogenetic tree illustrating their relationships. The tree is shown in the
inner part of the Figure. Branches in the tree corresponding to the four more abundant phyla in the tree (Firmicutes, Bacteriodetes, Proteobacteria, and Spirochaetes)
were colored. Bins were named with their id number and original genera, and labels for the most abundant genera were also colored. Outer circles correspond to:
the completeness of the bins (green-colored, most internal circle), and the abundance of each bin in each sample (red-colored). Each circle corresponds to a
different sample (H, Hadza; I, Italians), and the red color intensities correspond to the bin’s abundance in the sample. The picture was prepared using the iTOL
software (https://itol.embl.de).

algorithm (Ye and Doak, 2009), that defines each pathway
as an unstructured gene set and selects the fewest pathways
that can account for the genes observed within each bin.
The inference of several carbohydrate degradation pathways
in the bins can be observed in Supplementary Figure
S1.

One of the motivations for the development of SqueezeMeta
was making it capable of performing a full metagenomic
analysis on a limited computing infrastructure, such as the one
that can be expected in the course of in situ metagenomic
sequencing (Lim et al., 2014; Johnson et al., 2017). We
created a setting mode (–lowmem) carefully tailored to run
with limited amounts of resources, especially RAM memory.
To test this capability, we were able to co-assemble two
metagenomic samples from the Hadza metagenomes, composed
of 40 million reads amounting to almost 4 GB of DNA sequence.
We ran the merged mode of SqueezeMeta using the – low-
memory option in a standard laptop computer, using just 8
cores and 16 GB RAM. The run was completed in 10 h,
generating 33,660 contigs in 38 bins and 124,065 functionally

and taxonomically annotated genes. Using the same settings,
we also co-assembled ten MinION metagenomes from the gut
microbiome sequencing of head and neck cancer patients1,
summing 581 MB in less than 4 h. These experiments reveal
that SqueezeMeta can be run even with scarce computational
resources, and it is suitable for its intended use of in situ
sequencing where the metagenomes will be moderate in
size.

DISCUSSION

SqueezeMeta is a highly versatile pipeline that enables analyzing
a large number of metagenomes or metatranscriptomes in
a very straightforward way. All analysis steps are included,
starting with assembly, subsequent taxonomic/functional
assignment of the resulting genes, abundance estimation

1https://www.ncbi.nlm.nih.gov/bioproject/PRJNA493153
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and binning to obtain as many genomes as possible in the
samples. SqueezeMeta is designed to run in moderately-
sized computational infrastructures, relieving the burden
of co-assembling tens of metagenomes by using sequential
metagenomic assembly and ulterior merging of resulting contigs.
The software includes specific software and adjustments to be
able to process MinION sequences.

The program includes several verifications on the results,
such as the detection of possible inconsistent contigs and bins,
and estimation of the latter’s completion using the checkM
software. Finally, results can easily be inspected and managed
since SqueezeMeta includes a built-in MySQL database that can
be queried via a web-based interface, allowing the creation of
complex queries in a very simple way.

One of the most remarkable features of this software is
its capability to operate in limited computing infrastructure.
We were able to analyze several metagenomes in a few
hours using a virtual machine with just 16 GB RAM.
Therefore, SqueezeMeta is apt to be used in scenarios in which
computing resources are limited, such as remote locations
in the course of metagenomic sampling campaigns. Also, it
does not require the availability of any Internet connection.
Obviously, complex, sizeable metagenomes cannot be analyzed
with these limited resources. However, the intended use of in situ
sequencing will likely produce a moderate and manageable data
size.

SqueezeMeta will be further expanded by the creation of new
tools allowing in-depth analyses of the functions and metabolic
pathways represented in the samples.
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FIGURE S1 | The presence of several carbohydrate degradation pathways in the
bins. The outer circles indicate the percentage of genes from a pathway present in
each of the bins. According to that gene profile, MinPath estimates whether or not
the pathway is present. Only pathways inferred to be present are colored. As in
Figure 4, the bins tree is performed from a distance matrix of the orthologous
genes’ amino acid identity, using the compareM software
(https://github.com/dparks1134/CompareM). The four most abundant phyla are
colored (branches in the tree), as well as the most abundant genera (bin labels).
The picture was elaborated using the iTOL software (https://itol.embl.de).

FILE S1 | Description of novel algorithms implemented in SqueezeMeta.
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