75 research outputs found

    The use of the reed (Phragmites australis) in wastewater treatment on constructed wetlands

    Get PDF
    The constructed wetland is a near-natural wastewater treatment technique, where reed (Phragmites australis) is an important component. The high rate of small residential settlements (less than 2000 population equivalent (PE) in Hungary suggests the consideration of cost-effective, locally operating wastewater treating methods. The present casework compares the conventional activated sludge treatment with the near-natural root-zone technology by means of the pollutant removal capacity of currently operating waste treatment plants. Examination of the water quality data shows that reed bed systems have a stable removal efficacy of organics of a similar rate to the conventional technologies, while in view of nutrients they have higher retention ability, so are beneficial against eutrophication

    Cisplatin and Pemetrexed Activate AXL and AXL Inhibitor BGB324 Enhances Mesothelioma Cell Death from Chemotherapy

    Get PDF
    Reactive oxygen species (ROS) can promote or inhibit tumorigenesis. In mesothelioma, asbestos exposure to serous membranes induces ROS through iron content and chronic inflammation, and ROS promote cell survival signaling in mesothelioma. Moreover, a current chemotherapy regimen for mesothelioma consisting of a platinum and antifolate agent combination also induce ROS. Mesothelioma is notoriously chemotherapy-resistant, and we propose that ROS induced by cisplatin and pemetrexed may promote cell survival signaling pathways, which ultimately may contribute to chemotherapy resistance. In The Cancer Genome Atlas datasets, we found AXL kinase expression is relatively high in mesothelioma compared to other cancer samples. We showed that ROS induce the phosphorylation of AXL, which was blocked by the selective inhibitor BGB324 in VMC40 and P31 mesothelioma cells. We also showed that cisplatin and pemetrexed induce the phosphorylation of AXL and Akt, which was also blocked by BGB324 as well as by N-acetylcysteine antioxidant. AXL knockdown in these cells enhances sensitivity to cisplatin and pemetrexed. Similarly, AXL inhibitor BGB324 also enhances sensitivity to cisplatin and pemetrexed. Finally, higher synergy was observed when cells were pretreated with BGB324 before adding chemotherapy. These results demonstrate cisplatin and pemetrexed induce ROS that activate AXL, and blocking AXL activation enhances the efficacy of cisplatin and pemetrexed. These results suggest AXL inhibition combined with the current chemotherapy regimen may represent an effective strategy to enhance the efficacy of chemotherapy in mesothelioma. This is the first study, to our knowledge, on chemotherapy-induced activation of AXL and cell survival pathways associated with ROS signaling

    The ESS and replicator equation in matrix games under time constraints

    Get PDF
    A dolgozat monomorf, illetve polimorf populációk időmegszorítással kibővített játékelméleti, illetve dinamikus modelljének összehasonlításával foglalkozik. Vizsgáljuk, hogyan kapcsolódik a monomorf populációra vonatkozó játékelméleti modell egyensúlyi pontja és a monomorf populációnak megfelelő polimorf populáció időbeli viselkedését leíró dinamikus modell egyensúlyi pontja. Különös figyelmet szentelünk annak az esetnek, amikor az egyensúlyi pont stabil. Belátjuk, hogy a monomorf modell Nash egyensúlyi pontjai a polimorf modell egyensúlyi pontjai, sőt ha a Nash egyensúly szigorú, akkor a polimorf modell megfelelő pontja aszimptotikusan stabil. Fő eredményünk annak igazolása, hogy amennyiben a polimorf populáció két típusból áll, akkor a monomorf modell egyensúlyi pontjának evolúciós stabilitása ekvivalens a polimorf populáció dinamikus modellje megfelelő egyensúlyi pontjának aszimptotikus stabilitásával

    To save or not to save your family member’s life? Evolutionary stability of self-sacrificing life history strategy in monogamous sexual populations

    Get PDF
    Abstract Background For the understanding of human nature, the evolutionary roots of human moral behaviour are a key precondition. Our question is as follows: Can the altruistic moral rule “Risk your life to save your family members, if you want them to save your life” be evolutionary stable? There are three research approaches to investigate this problem: kin selection, group selection and population genetics modelling. The present study is strictly based on the last approach. Results We consider monogamous and exogamous families, where at an autosomal locus, dominant-recessive alleles determine the phenotypes in a sexual population. Since all individuals’ survival rate is determined by their altruistic family members, we introduce a new population genetics model based on the mating table approach and adapt the verbal definition of evolutionary stability to genotypes. In general, when the resident is recessive, a homozygote is an evolutionarily stable genotype (ESG), if the number of survivors of the resident genotype of the resident homozygote family is greater than that of non-resident heterozygote survivors of the family of the resident homozygote and mutant heterozygote genotypes. Using the introduced genotype dynamics we proved that in the recessive case ESG implies local stability of the altruistic genotype. We apply our general ESG conditions for self-sacrificing life history strategy when the number of new-born offspring does not depend on interactions within the family and the interactions are additive. We find that in this case our ESG conditions give back Hamilton’s rule for evolutionary stability of the self-sacrificing life history strategy. Conclusions In spite of the fact that the kidney transplantations was not a selection factor during the earlier human evolution, nowadays “self-sacrificing” can be observed in the live donor kidney transplantations, when the donor is one of the family members. It seems that selection for self-sacrificing in family produced an innate moral tendency in modulating social cognition in human brain

    State-controlled epidemic in a game against a novel pathogen

    Get PDF
    The pandemic reminded us that the pathogen evolution still has a serious effect on human societies. States, however, can prepare themselves for the emergence of a novel pathogen with unknown characteristics by analysing potential scenarios. Game theory offers such an appropriate tool. In our game-theoretical framework, the state is playing against a pathogen by introducing non-pharmaceutical interventions to fulfil its socio-political goals, such as guaranteeing hospital care to all needed patients, keeping the country functioning, while the applied social restrictions should be as soft as possible. With the inclusion of activity and economic sector dependent transmission rate, optimal control of lockdowns and health care capacity management is calculated. We identify the presence and length of a pre-symptomatic infectious stage of the disease to have the greatest effect on the probability to cause a pandemic. Here we show that contrary to intuition, the state should not strive for the great expansion of its health care capacities even if its goal is to provide care for all requiring it and minimize the cost of lockdowns

    Juvenile honest food solicitation and parental investment as a life history strategy: A kin demographic selection model

    Get PDF
    Parent-offspring communication remains an unresolved challenge for biologist. The difficulty of the challenge comes from the fact that it is a multifaceted problem with connections to life-history evolution, parent-offspring conflict, kin selection and signalling. Previous efforts mainly focused on modelling resource allocation at the expense of the dynamic interaction during a reproductive season. Here we present a two-stage model of begging where the first stage models the interaction between nestlings and parents within a nest and the second stage models the life-history trade-offs. We show in an asexual population that honest begging results in decreased variance of collected food between siblings, which leads to mean number of surviving offspring. Thus, honest begging can be seen as a special bet-hedging against informational uncertainty, which not just decreases the variance of fitness but also increases the arithmetic mean. © 2018 Garay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes

    Get PDF
    Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron is introduced. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond

    Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes

    Get PDF
    Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, we introduce a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC ) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved
    corecore