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To save or not to save your family
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sacrificing life history strategy in
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Abstract

Background: For the understanding of human nature, the evolutionary roots of human moral behaviour are a key
precondition. Our question is as follows: Can the altruistic moral rule “Risk your life to save your family members, if
you want them to save your life” be evolutionary stable? There are three research approaches to investigate this
problem: kin selection, group selection and population genetics modelling. The present study is strictly based on
the last approach.

Results: We consider monogamous and exogamous families, where at an autosomal locus, dominant-recessive alleles
determine the phenotypes in a sexual population. Since all individuals’ survival rate is determined by their altruistic
family members, we introduce a new population genetics model based on the mating table approach and adapt the
verbal definition of evolutionary stability to genotypes. In general, when the resident is recessive, a homozygote is an
evolutionarily stable genotype (ESG), if the number of survivors of the resident genotype of the resident homozygote
family is greater than that of non-resident heterozygote survivors of the family of the resident homozygote and mutant
heterozygote genotypes. Using the introduced genotype dynamics we proved that in the recessive case ESG
implies local stability of the altruistic genotype. We apply our general ESG conditions for self-sacrificing life
history strategy when the number of new-born offspring does not depend on interactions within the family
and the interactions are additive. We find that in this case our ESG conditions give back Hamilton’s rule for
evolutionary stability of the self-sacrificing life history strategy.

Conclusions: In spite of the fact that the kidney transplantations was not a selection factor during the earlier
human evolution, nowadays “self-sacrificing” can be observed in the live donor kidney transplantations, when the
donor is one of the family members. It seems that selection for self-sacrificing in family produced an innate moral
tendency in modulating social cognition in human brain.
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Background
For the understanding of human nature, the evolution-
ary roots of human moral behaviour are a key precondi-
tion. The self-sacrificing behaviour within family is a

social norm in most cultures. In the paper we apply the
basic idea of evolution stability for our new population
genetics model to investigate when the self-sacrificing
behaviour within family is evolutionary rational. In
evolution, from eusociality [1], through parental care [2]
to sib cannibalism [3], interaction occurs between family
members, i.e. between parents and their offspring and
between siblings. For modelling this selection situation,
there are basically three different approaches, all of
which are connected to the present paper.
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The first one uses the classical evolutionary game the-
ory model [4, 5], based on the fact that interaction takes
place between two individuals and the pay-off depends
on the strategies of the players. For instance, if cooper-
ation is evolutionarily stable in a well-mixed population
[6, 7], then it should also be stable among siblings. How-
ever, classical evolutionary game theory is based on the
following two assumptions, neither of which hold in our
case. The first assumption is that the interaction is well-
mixed (i.e. the rate of interaction between different phe-
notypes is proportional to their relative frequency in the
whole population). Clearly, interaction within the family
is not well-mixed. On the one hand, it has been pointed
out [8] that if the interaction rate is high enough within
the same asexual phenotype, then the maximizer pheno-
type (maximizing the average fitness coming from the
interactions within the same phenotype) overperforms
the classical evolutionarily stable strategy, ESS. (We note
that there are a number of evolutionary studies on non-
well-mixed interactions [9–12]. Moreover, our problem
is connected to n-person games [12, 13], since the family
can be considered as a genetically well-defined group.
The second basic assumption of classical evolutionary
game theory is that the population is asexual. However,
parental care occurs in sexual families. We note that the
relationship between the predictions of asexual and sex-
ual evolutionary models is not a straightforward issue
[14, 15].
The second approach uses kin selection theory.

Hamilton [16] considered interactions between “neigh-
bours” in a non-overlapping sexual viscous population,
he measured the average genetic relatedness between
neighbours and used a gene pool approach. Moreover, in
this model interactions take place between two individ-
uals. Under these assumptions, Hamilton’s rule claims
that the frequency of altruistic genes should increase in
a sexual population if rB >C, where r is the genetic
relatedness of the recipient to the actor, B is the add-
itional reproductive benefit gained by the recipient of
the altruistic act and C is the reproductive cost to the in-
dividual performing the act. Observe that Hamilton’s
rule applies to an interaction between recipient and
actor, and only focuses on the degree of their genetic
relatedness, furthermore it does not take into account the
genotype-phenotype mapping. We note that Hamilton’s
rule was validated by Rowthorn [17] in a sexual model
where two alleles code different levels of altruism. More-
over, van Veelen [18] found that the mean inclusive fitness
is maximized if there is no pair of alleles for which there is
over- or underdominance. We also note that in a sexual
model for parent-offspring conflict [19, 20], Hamilton’s
rule could not be validated by Bossan et al. [21].
We call the attention to the fact that now we will

strictly focus only on the genes that determine the

altruistic interactions within a monogamous family, dis-
regarding the competition between families. In this case,
the distribution of altruistic genes in groups of families
has no direct effect on the evolutionary success of the
genes considered within the family. Thus our model can-
not be built upon any of the earlier life history models
[22, 23], or Price’s equation [24]. We note that the
models based on Price’s equation support Hamilton’s
rule [25, 26].
Before describing the third modelling approach and

setting up ours, we recall some recent results we con-
sider starting points of the present study. In Garay et al.
[3] a kin demographic selection model was introduced
for the study of the selection situations when interac-
tions take place only within a family of an asexual aging
population with overlapping generations. Here fitness
was the long-term growth rate of the phenotype, and it
was shown that cannibalism can be considered as a mu-
tualistic kin strategy, if the sib cannibal either decreases
its developmental time or increases fecundity in the
adult stage. There are two further applications of this
kin demographic selection model. In Garay et al. [27]
the juvenile honest food solicitation and parental invest-
ment was studied. It was shown that honest begging
results in decreased variance of collected food among
siblings, which leads to a higher mean number of surviv-
ing offspring. Furthermore, in Garay et al. [28] the
evolutionary roots of human morality were studied. It
was found that the biological version of the Fifth
commandment, called the Fifth rule (“During your repro-
ductive period, give away from your resources to your
post-fertile parents”) can spread by means of natural
selection, by increasing the survival rates of the family
members. All three studies cited above considered asex-
ual populations, thus the question arises: What is the
mathematical condition for the evolutionary stability of
altruistic behaviour within the monogamous family in a
diploid sexual population?
To answer the latter question, we will follow the third

modelling approach, namely we will use a population
genetic model that can take account of the genetic back-
ground of the inheritance of the altruistic phenotype,
and the frequency dependent interactions between geno-
types, at the same time [29–31]. The advantages of a
population genetic model for the evolution of altruism
were already demonstrated back in the 1980’s, [32–34].
Maynard Smith [30] has already pointed out that the
personal fitness model has the virtue of “incorporating
the evolution of altruism into the corpus of population
genetics as an example of frequency-dependent selection.”
It seems to us that this research line, in comparison with
the kin and group selection approaches, is less elabo-
rated. The reason for this, as we see it, is that the study
of population genetics models may be mathematically
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rather involved, although recently these models gained
more attention [17, 35]. Furthermore, based on Hamilton
[36] Michod [37, 38] pointed out that inbreeding (e.g. sib
mating) may facilitate the evolution of altruism [39].
However, the incest has been one of the most widespread
of all cultural taboos, both in present and in many past
societies [40]. What is more, in Israeli kibbutzim, it was
observed that there was no sexual activity and no marriage
between those who are not relatives but grew up in the
same peer group. Among marriages of second generation
adults in all kibbutzim, no intra-peer group marriage
occurred; in fact, a continuous exposure among peers
aged 0–6 years results in sexual avoidance and exogamy
[41]. Based on all these, here we only focus on the exog-
amous, monogamous families (in particular, we will not
consider either polygamy, or sexual selection). We note
that, for the sake of simplicity, we do not investigate either
the stability of monogamy [42], or the effect of the cultural
evolution [43]. The reason for the latter is our hypothesis
that the evolutionary roots of the moral may originate
from the times before the evolution of language. Since we
are strictly interested only in what happens within monog-
amous families, our population genetics model is rooted
in the models of Hull [44] and Haldane and Jayakar [45],
where the juveniles’ survival rate depends on the geno-
types of their parents. The basic assumptions of the here
introduced population genetics model are quite different
from those of Hamilton [16, 32, 37], and are as fol-
lows: 1. We consider a large enough, non-ageing, sex-
ual population with overlapping generations [17, 21].
2. The mating system is exogamous and monogamous
[46] without promiscuity and in each reproductive
season the pair formation is random. 3. Interactions
take place only within each family, and they deter-
mine the survival rate of the family members. Thus
we consider the following population cycle: Firstly,
the pairs of parents are formed randomly, so the mat-
ing system is not viscous. Secondly, the family has
offspring, whose phenotype is determined by the ge-
notypes of the parents according to Mendelian inher-
itance. Thirdly, the survival rate of each family
member is determined by the phenotypes of family
members. Then the cycle starts again. In spite of the
fact that the random mating happens between zygotes
in the whole population, in our phenotypic selection
situation each individual’s survival rate is determined
by her family members, and the genotype composition of
each family depends on the genotypes of monogamous
pairs of parents, thus our selection situation motivates us
to use the mating table approach as a starting component
of the population genetics model introduced above. A
complete dynamical characterization of genotype distribu-
tion changes is not our goal. We are interested only in the
evolutionary stability of a genotype distribution in a sexual

population: Under what conditions is a homozygote state
stable?
In the present paper we focus on the following “self-

sacrificing” norm: “Risk your life to save your family
members, if you want them to save your life.” In
biological terms, this norm of self-sacrificing means that
the actors risk their own lives for the lives of their family
members, i.e. the altruistic interactions change the
survival rate of the family members. (In Additional file 1:
SI A, we give a fairly general method for the biological
modelling of a moral norm.) We note that the nomen-
clature of “self-sacrificing” goes back to the Haldane
quip [47]: “Legend has it that in a pub one evening
Haldane told his friends that he would jump into a river
and risk his life to save two brothers, but not one, and
that he would jump in to save eight cousins, but not
seven.” We consider a monogamous family in which
male and female differ only in sex, i.e. they are the same
from all other points of view. Furthermore, we consider
three interactions within the family (see in Fig. 1).
The first interaction is parental investment, i.e. when

parents, at the expense of decreasing their own survival
rate, increase the survival rate of their offspring. We
note that, in human, birth is risky, in our terminology
self-sacrificing, e.g. in 2015 the global maternal mortality
ratio was 216 deaths per 100 000 live births [48]. For
simplicity, we consider two levels of parental investment:
a provider parent invests more than a non-provider
parent. The second interaction is sib altruism, i.e. the
altruistic juvenile individuals, at the expense of decreas-
ing their own survival rate, increase the survival rate of
their siblings, while the non-altruistic siblings do not
help others. The third interaction is offspring gratitude,
i.e. juvenile individuals, at the expense of decreasing
their own survival rate increase the survival rate of their
parents, while non-grateful siblings do not. We remind
that from psychological point of view, human gratitude
appears during childhood [49–51]. We use the term
“offspring gratitude” to emphasize the difference from
other kinds of gratitude as e.g. “upstream reciprocity”
[52, 53], and the Fifth rule [28]. Now we can make pre-
cise what we understand under “self-sacrificing life
history strategy”: an individual having this phenotype is
altruistic and grateful in juvenile age, and is a provider
parent during adult age. Our question can now be
formulated as follows: Under what conditions will the
self-sacrificing life history strategy be evolutionary stable
in sexual populations, if mutation is rare enough?
In this paper we introduce a new population genetics

model, with three main simplifying assumptions: during
pre-human and early human evolution there was no
family planning, the offspring numbers are fixed (i.e. the
offspring number in families does not depend on the
interactions within the family), and the populations are
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non-aging. We conclude our study with a discussion
section.

Results
First we give the details of the genetic system we will
use: We consider a population of (large) size N with sex
ratio half-half, with no sexual selection, i.e. the females
and males are different only in their sex.

Mating system
We consider well-mixed reproductive pair formation
between genotypes in the whole population. The species
is monogamous with internal fertilization, so N/2 cou-
ples are formed at random, and each couple breeds a
fixed number n of offspring. Thus the probability of two
genotypes’ mating depends only on their frequencies in
the population, so there is no assortative mating. Thus,
the degree of relatedness between full siblings is ½. We
emphasize that if the population is large enough, then
the random mating excludes inbreeding.

Genetic composition
We consider a three-dimensional life history strategy. For
simplicity, we assume each of them is coded by only one
autosomal locus, exactly two alleles. Assume these loci are
located on the same autosomal chromosome. (Since later
we assume that mutation is rare, if the three loci are on
different chromosomes, our calculation still applies.)

Mendelian genotype-phenotype map
We denote the altruistic/non-altruistic alleles by a/A, the
grateful/non-grateful alleles by b/B, and the provider/non-
provider ones by c/C. We will study two cases: when the
self-sacrificing alleles are recessive, and when they are
dominant with respect to the mutant alleles [30, 32]. Let
K be the number of genotypes in the population, denote
the genotypes by Gi, i = 1, 2, …, K. In theory, K = 27

genotypes are possible (three possibilities on each locus),
but since we consider rare mutations, K will be a smaller
number. Our main assumption on the genotype-pheno-
type map is the following: In the resident sexual popula-
tion, each individual has self-sacrificing phenotype, coded
by a totally homozygote genotype. This kind of realization
is a prerequisite for the sexual population to evolve to the
optimal state of the asexual population [54].

Interaction within the family
Clearly, the parents’ genotypes determine the behaviour
of the parents and the genotype distribution of theirs
offspring, thus the behaviour of the offspring as well.
Consequently we can use the following notation: If the
parents’ genotypes are Gi and Gj, let the parents’ survival
probability be qi(ij) and qj(ij), respectively, and let the
average number of survived offspring with genotype Gk

be nk(ij) (cf. [44, 45]). Observe that our model is general
in the sense that nk(ij) can be given by an evolutionary
game with arbitrary many players.

General conditions for the evolutionary stability of
genotypes
Now we ask when the self-sacrificing genotype is an
evolutionarily stable genotype (ESG) in the arbitrarily
large sexual population. Following Maynard Smith and
Price [5], we say a stage is ESG if the rare mutant gene
cannot invade into the monomorphic resident popula-
tion. Mathematically this means that the (relative) fre-
quency of the resident genotype increases from generation
to generation, provided mutation is sufficiently rare. If mu-
tation is very rare, there is time enough for the fixation of
the best genotype between two mutations. On the other
hand, if mutation is rare enough, only one type of mutation
occurs at a time in the resident monomorphic [a,b,c] popu-
lation, i.e. only one of [a,b,c]→ [A,b,c], [a,b,c]→ [a,B,c] and
[a,b,c]→ [a,b,C] mutation appears. Our assumption on

Fig. 1 The arrows visualize interactions, + and –stands for gain and cost, respectively
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mutation is parallel with the streetcar theory by Hammer-
stein [55], since if mutation is very rare, then the [A,B,c]
chromosome can appear only if either a→A mutation oc-
curs first, and after the fixation of the A allele, b→ B muta-
tion occurs, or conversely, etc. Finally, since mutation is
very rare, the relative frequency of the mutant is very small.
Now consider a mutation, e.g. a→A. We have the fol-

lowing diploid genotypes: G1 = ([a,b,c],[a,b,c]), G2 = ([a,b,c],
[A,b,c]) and G3 = ([A,b,c],[A,b,c]), with relative frequencies
y1, y2, and y3, respectively, which compose the frequency
vector y = (y1, y2, y3). The genotype survival table based on
the mating table is as follows (see Table 1):
For instance, consider a family of parents with G1 and

G2 genotypes. This family has G1 offspring with probability
½, and G2 offspring with probability ½, as well. Thus the
genotype distribution in this family is given by a binomial

distribution, i.e.
n
k

� �
ð12Þ

n is the probability that this family

has exactly k offspring with genotype G1. The same table
applies for the two other mutations b→ B and c→C.
The difficulty in modelling this process is that the allele

distribution cannot determine the genotype distribution,
because random mating happens between zygotes and not
between gametes (in our case, the fertilisation is internal
and there is no promiscuity), and the selection depends
on the genotypes of monogamous pair of parents [44, 45].
Consequently, the states of our system must be the parent
genotype distributions, since in the next generation the al-
lele distribution cannot give the genotype distribution as
in the case when the gametes mate randomly. For in-
stance, in the next generation the relative frequency of a
heterozygote genotype is not equal to the double product
of the relative frequencies of the alleles in the heterozygote

genotype. In other words, in our model the genotype is
the unit of the evolution (i.e. the replicator).
As we already mentioned, we adapt the intuitive defin-

ition of evolutionary stability by Maynard Smith and Price
[5]: A state is evolutionary stable, if the rare mutant cannot
invade into the monomorphic resident population. In other
words, if the growth rate of genotype G1 is higher than the
average growth rate of the whole population, then a rare
enough mutant dies out. This paradigm idea is formalized
in SI. B. There we investigate necessary and sufficient con-
ditions for the evolutionary stability of a genotype Gi in a
general setting. In our special case, we only have three ge-
notypes, G1 is the resident genotype, G2 is a primary mu-
tant genotype, and G3 is a secondary mutant. Primary
mutants are ones which can appear spontaneously at a cer-
tain time, while secondary mutants can only be born to
mutant-mutant couples. Hence, if the frequency of primary
mutants is of order ε, then the frequency of secondary mu-
tants is only of order ε2. In SI (see condition (ii) of Theorem
1 in SI B), we show that in this setting, a simple sufficient
condition for the evolutionary stability of the resident geno-
type is the following:
First order condition:

2q1 11ð Þ þ n1 11ð Þ > 2 q2 12ð Þ þ n2 12ð Þ
� �

: ð1Þ

This means that the growth rate
2q1ð11Þþn1ð11Þ

2 of the resi-
dent G1xG1 family has to be larger than the growth rate
q2ð12Þþn2ð12Þ

1 of genotype G2 in a G1xG2 family formed by
resident and mutant heterozygote parents. Observe that
Hamilton’s rule (concerning pair of actors) and the first
order condition (1) are different.

Table 1 Genotype survival table based on the mating table

Genotypes
of parents

Average
number
of
couples

Probability distribution of offspring, and
Average number of survived family members,
for genotypes G1, G2, G3

G1 G2 G3

G1xG1 Ny21
2

1 0 0

2q1(11) + n1(11) 0 0

G1xG2 Ny1y2 ½ ½ 0

q1(12) + n1(12) q2(12) + n2(12) 0

G1xG3 Ny1y3 0 1 0

q1(13) n2(13) q3(13)

G2xG2 Ny22
2

¼ ½ ¼

n1(22) 2q2(22) + n2(22) n3(22)

G2xG3 Ny2y3 0 ½ ½

0 q2(23) + n2(23) q3(23) + n3(23)

G3xG3 Ny23
2

0 0 1

0 0 2q3(33) + n3(33)
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Heuristically, the reason behind condition (1) is as
follows. Initially, the number of G1 individuals in the
population is approximately N (plus a term of order ε).
In the next generation, the number of G1 individuals is
about N

2 ð2q1ð11Þ þ n1ð11ÞÞ , plus terms of smaller order.

Therefore, the growth rate of this genotype, as the muta-

tion frequency ε tends to zero, is
2q1ð11Þþn1ð11Þ

2 . On the
other hand, the number of G2 individuals in the initial
population is approximately Nε (plus a term of order ε2).
In the next generation, the number of G2 individuals is
Nε(q2(12) + n2(12)), plus terms of smaller order. Therefore,
the growth rate of this genotype, as the mutation fre-
quency ε tends to zero, is q2(12) + n2(12). Genotype G1 is
ESG, if it has a higher growth rate than genotype G2.
Observe that if the mutant allele A is recessive under al-

lele a, then genotypes G1 and G2 have the same pheno-
type, thus q1(11) = q1(12) = q2(12) and n1(11) = 2n1(12) = 2n2(12).
Thus in condition (1) above, equality holds. In other words,
when the resident allele is dominant over the mutant one,
then with respect to condition (1), the mutant is neutral in
the sense that the most abundant families G1G1 and G1G2

are phenotypically the same. Condition (iii) of Theorem 1 in
SI B gives a sufficient second-order condition for genotype
G1 to be an ESG in this case as well. In these conditions the
other, less frequent parent couples also appear (e.g. mating
G2xG2). This shows that the genotype-phenotype mapping
can change the conditions of the ESG.
Evolution is a dynamical process, and the notion of evo-

lutionary stability relies upon an implicit dynamical con-
sideration, such as the classical matrix game and
replicator dynamics [56]. In SI C we have introduced a
genotype dynamics for the frequency vector of the geno-
types. In a general setting, in Theorem 2 we have proved
that the resident population containing recessive homozy-
gotes, i.e. y∗ = (1, 0, 0), is locally asymptotically stable if in a
neighbourhood of y∗ = (1, 0, 0), the growth rate of geno-
type G1 is higher than the average growth rate of the
whole population.

Application: conditions for the evolutionary stability of the
self-sacrificing phenotype in the additive model
In this section we apply our general result for the simplest,
additive situation, since additivity gives a chance to make
clear the connection between Hamilton’s rule and our ESG
conditions [57], see SI B. We consider the special case when
the costs and benefits of altruism and gratitude are additive.
We denote by b and ca the benefit and cost of altruism,
respectively. Also, γ and cg denote the benefit and cost of
gratitude, respectively, where we suppose that each offspring
helps only one of its parents, chosen randomly. (We note that
if each offspring helps both parents, then the individual cost
of gratitude is 2cg and the benefit of each parent is γ. For this
case we get the same condition.) Regarding parental

investment, the baseline survival probability of a parent with
investment Fi is still qi (with q1 < q2), but we now have three
types of families according to the number of provider
parents. We denote by πi the baseline survival probability of
an offspring with i provider parents, i = 0, 1, 2. Clearly,
π2 > π1 >π0.
Let us find conditions under which the self-sacrificing

genotype is an ESG. In the next subsections, we show the
calculations for the case of dominant mutation, while for
recessive mutation, we only give the results, and refer to SI
B for the derivation.
Introduce η as the number of G2 offspring born in a

G1xG2 family, which has a binomial distribution with
parameters n and ½.

Non-altruistic mutant
Since altruism among siblings does not affect parents’
survival rates, q1(11) = q2(12). Hence, condition (1) sim-
plifies to n1(11) > n2(12). If the non-altruistic mutation
is dominant, then

n2 12ð Þ ¼ 1
2
n1 11ð Þ þ E η η−1ð Þca−η η−1ð Þbð Þ

¼ 1
2
n1 11ð Þ þ 1

2
n n−1ð Þca− 1

4
n n−1ð Þb;

thus condition (1) is equivalent to

b > 2ca:

It is shown in SI B.2.2 that this condition is necessary and
sufficient for the altruistic allele to be an ESG. Also, we de-
rive in SI B that if mutation is recessive, then b > 2ca is a
sufficient condition, while b ≥ 2ca is necessary.

Non-grateful mutant
Since in a G1xG2 family, each grateful offspring adds an
average γ

2 to the G2 parent’s survival probability, we have

q2 12ð Þ ¼ q1 11ð Þ−E η
γ
2

� �
¼ q1 11ð Þ−

1
4
nγ:

Furthermore,

n2 12ð Þ ¼ 1
2
n1 11ð Þ þ E ηcg

� � ¼ 1
2
n1 11ð Þ þ 1

2
ncg :

Thus

2 q2 12ð Þ þ n2 12ð Þ
� �

¼ 2q1 11ð Þ þ n1 11ð Þ−
1
2
nγ þ ncg ;

Hence condition (1) is equivalent to

γ > 2cg :

Similarly to the previous case, it is shown in SI B.2.1
that this condition is necessary and sufficient for the
grateful allele to be ESG. Also, we derive in SI B.1.1 that
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if mutation is recessive, then γ > 2cg is a sufficient condi-
tion, while γ ≥ 2cg is necessary.

Non-provider mutant
Now n1(11) > nπ2, n2ð12Þ > 1

2 nπ1, q1(11) > q1 and q2(12) > q2.
Hence condition (1) for the provider behaviour to be
ESG is

n π2−π1ð Þ > 2 q2−q1ð Þ:

In SI B.2.3 it is derived that if equality holds in condi-
tion (1), then the second order condition is π1 >

π0þπ2
2 ,

in other words, the benefit of two provider parents has
to be less than the double of the benefit of a single
provider. In the recessive case, n(π2 − π1) > 2(q2 − q1), is
again sufficient for the provider allele to be an ESG.

Discussion
We consider sexual models with the following assump-
tions: the population is overlapping and non-ageing,
moreover, mutation is rare enough. We emphasize that
our simplifying assumption, namely that the interactions
within the family have no effect on the offspring number
of the family, is not used in the general model, but is
used in the applications.
In our study we strictly follow the Darwinian tenet: a

genotype with higher growth rate than the average
growth rate of the whole population will be fixed by the
natural selection. In other words, we consider neither
the inclusive fitness [58], nor the “welfare of family”
(similarly to “welfare of group” [59]), as an objective
function. We think that our model takes account of
some basic ideas of the above two research lines, in this
sense it is a partial combination of both approaches. The
basic idea of the inclusive fitness theory is that genetic
relatedness is important for the social evolution [60],
and the mating table method gives a detailed description
of the genetic relatedness. The basic idea of group
selection theory is that the multi-level selection is im-
portant for social evolution. In the present paper, the al-
truistic interactions within the family determine the
individual survival rate of all family members. However,
the family has genetically related members, and our
present model does not take into account the competi-
tion between families [61] and group-level phenomena
(e.g. competition between groups formed by unrelated
families, moreover fission, fusion, and extinction of
groups [62]). Based on these, we hope that our model is
a step towards a further population genetics model,
which simultaneously takes account of the details of the
genetic system (e.g. mating system, genotype-phenotype
mapping etc.) and the details of multi-level selection.
We feel that such type of further population genetics
models could bring together the above basic ideas of the

kin and the group selection theories [29–31], under the
umbrella of the “orthodox” Darwinian view [63, 64].

Evolutionary stability when interaction takes place within
the family
We adapted the intuitive definition of ESS by Maynard
Smith and Price to our population genetics model, and
depending on whether the resident is dominant or reces-
sive, we found the following two conditions for the ESG:
When the resident is recessive under the mutant, then
the number of survivors of the resident genotype (G1) in
the resident homozygote family (G1G1) is greater than
twice that of the non-resident heterozygote (G2) survi-
vors in the family of the resident homozygote and het-
erozygote genotypes (G1G2). When the resident is
dominant over the mutant, then the number of survivors
of the resident genotype (G1) in the families of resident
homozygote (G1G1) and the genotype contains mutant
gene (G1G2 and G1G3), is greater than the number of
non-resident heterozygote (G2), and mutant homozygote
(G3) survivors in the families do not contain the resident
homozygote (G2G2, G2G3 and G3G3). Observe that the
conditions of evolutionary stability in the sexual model
are sensitive to the genotype-phenotype mapping (see
Theorem 1 in SI B), since when the resident is dominant
over the mutant, phenotypically there is no difference
between the resident homozygote family (i.e. G1G1) and
the family of the resident homozygote and heterozygote
genotype (i.e. G1G2) [32].
The models of Hamilton [16] and ours are quite differ-

ent, since they are based on the gene pool and the mat-
ing table approaches, respectively. Consequently, the
general conditions of the inclusive fitness approach and
those of our evolutionary stability approach are quite
different: The conditions of the first one are based on
interactions between two individuals. Our ESG condi-
tions, instead, are based on the different numbers of sur-
vivors of different genotypes in different families. In
summary, our general conditions are not the same as
Hamilton’s rule. However, in the additive model our first
and second conditions (see conditions (ii) and (iii) of
Theorem 1 in SI) are equivalent with Hamilton’s rule.

Further possible biological applications
Although the present paper was motivated by a human
moral rule, our model strictly belongs to the theory of
evolution, and can be used when a group contains only
family members. The introduced ESG conditions are
general, thus they can be also used to other types of
interactions within the family. For instance, if the re-
source is scarce, then e.g. a symmetric dove-hawk game
can describe the interaction between siblings. Moreover,
the interaction between parents and offspring can be
given by Trivers’ model [19] etc. In other words, if the
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interactions between family members can be given by
some reasonable n-person game, then the mean number
of the survived members of different families can be cal-
culated. Furthermore, the eusocial animals (e.g. naked
mole-rat), certain mammals that exhibit some eusocial
tendencies (e.g. meerkats, dwarf mongooses) and wolf,
also exhibit offspring gratitude defined above. In the
future our model can be extended to the case when sib
altruism can increase the number of offspring in the
family.

Evolutionary root of morality
In the Introduction we focused on a partial version of
golden rule: “Risk your life to save your family members,
if you want them to save your life.” In biological terms,
this rule can be described as self-sacrificing life history
strategy. We have given sufficient conditions for the
evolutionary stability of this strategy by pure biological
reasoning. Thus we can say that this moral rule has an
evolutionary root, in other words, this moral rule is
evolutionarily rational. The above conditions for evolu-
tionary stability of self-sacrificing life history strategy for
the monogamous sexual model are valid, if all the
considered different interactions within the family are ef-
ficient enough. This holds under such ecological condi-
tion that the self-sacrificing family can either effectively
defend against predators, or successfully exploit the food
resources, or both. The latter condition should have held
during the evolution of our ancestors. Altruism can
appear in a cooperation, e.g. when a predator attacks a
family member, then other family members can help, and/
or they cooperatively defend against predator [8, 65].
Obviously, all assumptions of our biological model do

not hold for humans nowadays (e.g. the number is off-
spring is mostly not biologically, but rather socially
determined). Nevertheless, the existence of altruism in
human families is documented at present, e.g. the altru-
ism is an important factor in family firms in USA [66].
Furthermore, “self-sacrificing” can be observed in kidney
transplantations, when the live donor is one of the fam-
ily members [67]. The estimated rate of transplants rely-
ing on live donations from family members was 80% in
Mexico [68], 60% in USA [69], 37% in Taiwan, 99% in
Japan, and 66% in South Korea [70].
Now the following question arises: Is there any evi-

dence that the moral rule considered here has an innate
tendency? We think that such evidence must be con-
nected to the human brain, since it has been previously
shown that differences in brain activity in different brain
regions are associated with moral and emotional conflict
regulation [71], decision making [72], mentalizing [73]
and perspective-taking [74]. Bacha-Trams et al. [75] fo-
cused on the moral dilemma of Anna to donate one of
her kidneys to her sister Kate, who is fatally ill with

cancer. One group of subjects were told that the sisters
were genetic sisters, the other group was told that Anna
had been adopted as a newborn. Although 90% of the
subjects self-reported that genetic relationship was not
relevant, their brain activity was quite different between
the two groups. Bacha-Trams et al. [75] concluded that
mere knowledge of a genetic relationship between inter-
acting persons robustly modulates social cognition of
the perceiver. This result is in harmony with an earlier
result on sib altruism, if the different unconscious brain
activities can be considered as innate reactions.

Conclusions
We demonstrated that the self-sacrificing behaviour in
monogamous and exogamous families can confer a se-
lective advantage under the right conditions. Further-
more, some kind of evolutionary moral sense depending
on the relationship has been detected in social cognition.
This behaviour plays an important role nowadays in liv-
ing-donor transplantation [69]. All these together call
the attention that, similarly to human psychology, hu-
man morality should also be rooted in human evolution.

Methods
We combine the methods of two research lines. The first
one is theoretical population genetics. Our introduced
new population genetics model is based on the mating
table approach and is a generalization of the models of
Hull [44] and Haldane and Jayakar [45], where the juve-
niles’ survival rate depends on the genotypes of their
parents. The second research line is evolutionary game
theory, since all individuals’ survival rate is determined
by their altruistic family members. We adapt the verbal
definition of evolutionary stability to genotypes, in the
framework of our population genetics model.
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