222 research outputs found

    Consistent Digital Curved Rays and Pseudoline Arrangements

    Get PDF
    Representing a family of geometric objects in the digital world where each object is represented by a set of pixels is a basic problem in graphics and computational geometry. One important criterion is the consistency, where the intersection pattern of the objects should be consistent with axioms of the Euclidean geometry, e.g., the intersection of two lines should be a single connected component. Previously, the set of linear rays and segments has been considered. In this paper, we extended this theory to families of curved rays going through the origin. We further consider some psudoline arrangements obtained as unions of such families of rays

    Algorithms for finding attribute value group for binary segmentation of categorical databases

    Get PDF
    科研費報告書収録論文(課題番号:13680387・基盤研究(C)(2)・H13~H15/研究代表者:徳山, 豪/パラメトリック最適化を用いた幾何学データ処理の研究

    High Quality Consistent Digital Curved Rays via Vector Field Rounding

    Get PDF
    We consider the consistent digital rays (CDR) of curved rays, which approximates a set of curved rays emanating from the origin by the set of rooted paths (called digital rays) of a spanning tree of a grid graph. Previously, a construction algorithm of CDR for diffused families of curved rays to attain an O(?{n log n}) bound for the distance between digital ray and the corresponding ray is known [Chun et al., 2019]. In this paper, we give a description of the problem as a rounding problem of the vector field generated from the ray family, and investigate the relation of the quality of CDR and the discrepancy of the range space generated from gradient curves of rays. Consequently, we show the existence of a CDR with an O(log ^{1.5} n) distance bound for any diffused family of curved rays

    Mining Optimized Association Rules for Numeric Attributes

    Get PDF
    AbstractGiven a huge database, we address the problem of finding association rules for numeric attributes, such as(Balance∈I)⇒(CardLoan=yes),which implies that bank customers whose balances fall in a rangeIare likely to use card loan with a probability greater thanp. The above rule is interesting only if the rangeIhas some special feature with respect to the interrelation betweenBalanceandCardLoan. It is required that the number of customers whose balances are contained inI(called thesupportofI) is sufficient and also that the probabilitypof the conditionCardLoan=yesbeing met (called theconfidence ratio) be much higher than the average probability of the condition over all the data. Our goal is to realize a system that finds such appropriate ranges automatically. We mainly focus on computing twooptimized ranges: one that maximizes the support on the condition that the confidence ratio is at least a given threshold value, and another that maximizes the confidence ratio on the condition that the support is at least a given threshold number. Using techniques from computational geometry, we present novel algorithms that compute the optimized ranges in linear time if the data are sorted. Since sorting data with respect to each numeric attribute is expensive in the case of huge databases that occupy much more space than the main memory, we instead apply randomized bucketing as the preprocessing method and thus obtain an efficient rule-finding system. Tests show that our implementation is fast not only in theory but also in practice. The efficiency of our algorithm enables us to compute optimized rules for all combinations of hundreds of numeric and Boolean attributes in a reasonable time

    Zone diagrams in Euclidean spaces and in other normed spaces

    Get PDF
    Zone diagrams are a variation on the classical concept of Voronoi diagrams. Given n sites in a metric space that compete for territory, the zone diagram is an equilibrium state in the competition. Formally it is defined as a fixed point of a certain "dominance” map. Asano, Matoušek, and Tokuyama proved the existence and uniqueness of a zone diagram for point sites in the Euclidean plane, and Reem and Reich showed existence for two arbitrary sites in an arbitrary metric space. We establish existence and uniqueness for n disjoint compact sites in a Euclidean space of arbitrary (finite) dimension, and more generally, in a finite-dimensional normed space with a smooth and rotund norm. The proof is considerably simpler than that of Asano etal. We also provide an example of non-uniqueness for a norm that is rotund but not smooth. Finally, we prove existence and uniqueness for two point sites in the plane with a smooth (but not necessarily rotund) nor

    Distance k-Sectors Exist

    Full text link
    The bisector of two nonempty sets P and Q in a metric space is the set of all points with equal distance to P and to Q. A distance k-sector of P and Q, where k is an integer, is a (k-1)-tuple (C_1, C_2, ..., C_{k-1}) such that C_i is the bisector of C_{i-1} and C_{i+1} for every i = 1, 2, ..., k-1, where C_0 = P and C_k = Q. This notion, for the case where P and Q are points in Euclidean plane, was introduced by Asano, Matousek, and Tokuyama, motivated by a question of Murata in VLSI design. They established the existence and uniqueness of the distance trisector in this special case. We prove the existence of a distance k-sector for all k and for every two disjoint, nonempty, closed sets P and Q in Euclidean spaces of any (finite) dimension, or more generally, in proper geodesic spaces (uniqueness remains open). The core of the proof is a new notion of k-gradation for P and Q, whose existence (even in an arbitrary metric space) is proved using the Knaster-Tarski fixed point theorem, by a method introduced by Reem and Reich for a slightly different purpose.Comment: 10 pages, 5 figure

    Distance Bounds for High Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays

    Get PDF
    We consider the problem of digitalizing Euclidean segments. Specifically, we look for a constructive method to connect any two points in Zd\mathbb{Z}^d. The construction must be {\em consistent} (that is, satisfy the natural extension of the Euclidean axioms) while resembling them as much as possible. Previous work has shown asymptotically tight results in two dimensions with Θ(logN)\Theta(\log N) error, where resemblance between segments is measured with the Hausdorff distance, and NN is the L1L_1 distance between the two points. This construction was considered tight because of a Ω(logN)\Omega(\log N) lower bound that applies to any consistent construction in Z2\mathbb{Z}^2. In this paper we observe that the lower bound does not directly extend to higher dimensions. We give an alternative argument showing that any consistent construction in dd dimensions must have Ω(log1/(d1)N)\Omega(\log^{1/(d-1)} N) error. We tie the error of a consistent construction in high dimensions to the error of similar {\em weak} constructions in two dimensions (constructions for which some points need not satisfy all the axioms). This not only opens the possibility for having constructions with o(logN)o(\log N) error in high dimensions, but also opens up an interesting line of research in the tradeoff between the number of axiom violations and the error of the construction. In order to show our lower bound, we also consider a colored variation of the concept of discrepancy of a set of points that we find of independent interest
    corecore