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Abstract
Representing a family of geometric objects in the digital world where each object is represented by a
set of pixels is a basic problem in graphics and computational geometry. One important criterion is
the consistency, where the intersection pattern of the objects should be consistent with axioms of
the Euclidean geometry, e.g., the intersection of two lines should be a single connected component.
Previously, the set of linear rays and segments has been considered. In this paper, we extended
this theory to families of curved rays going through the origin. We further consider some psudoline
arrangements obtained as unions of such families of rays.
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1 Introduction

The representation of geometric objects in the pixel world does not always satisfy geometric
properties such as Euclidean axioms. Figure 1 shows that a naive definition of digital lines
may cause inconsistency. In Figure 1, the intersection of a pair of digital lines is divided
into three connected components (in the 4-neighbor topology), while it is desired that the
intersection should be connected to imitate the Euclidean axiom that two non-parallel lines
intersect at a point. Thus, it is important to seek for a digital representation of a family of
geometric objects such that they satisfy a digital version of geometric axioms.

Figure 1 Inconsistency of intersection (green pixels) of two digital line segments.
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32:2 Digital Curved Rays

Geometric consistency is important in implementation of algorithms of computational
geometry. In geometric computation, we often experience that finite-precision computation
is suffered by geometric inconsistency. For example, the divide and conquer algorithm to
construct a Voronoi diagram given in the textbook of Preparata and Shamos [6] is known
to be difficult to implement. The algorithm needs to compute the intersection point of two
(possibly nearly parallel) lines, and then later decides whether the intersection point is above
or below another line. Therefore, we may need to compute the intersection point precisely
beyond the precision of the system to avoid inconsistency causing a wrong decision. It is
a difficult task to avoid such geometric inconsistency. After the seminal paper of Greene
and Yao [7], many approaches to overcome the geometric inconsistency in finite precision
computation have been proposed. Snap rounding [10, 8, 9] is one of the approaches, which
systematically replaces line segments with piecewise linear segments. Another approach
implemented in several softwares is the dynamic control of the precision [15, 13].

The pixel-based consistent representation of digital objects would lead to an additional
methodology for consistent geometric computation. In general, it is a difficult task to convert
families of geometric objects into families of digital objects without geometric inconsistency.
However, we have hope if we restrict the task on some fundamental curves to represent basic
geometric objects.

In this paper, we propose the consistent digital curved rays generalizing consistent digital
rays for straight lines [5, 14]. We also show constructions of digital rays that consistently
approximate some pseudoline arrangements in the first quadrant.

We consider the triangular region ∆ defined by {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ n} in the
plane, and the integer grid G = {(i, j) : i, j ∈ {0, 1, . . . , n}, i+ j ≤ n} in the region. We can
also handle a square region, but use ∆ to make the description easier.

Each element of G is called a pixel (usually, a pixel is a square, but we represent it by
its lower-left-corner grid point in this paper). A pixel is called a boundary pixel if it lies on
x+ y = n. We consider an undirected graph structure under the four-neighbor topology such
that (i, j) ∈ G is connected to (k, `) ∈ G if (k, `) ∈ {(i− 1, j), (i, j − 1), (i+ 1, j), (i, j + 1)}.

A digital ray S(p) is a path in G from the origin o to p, where S(o) = {o} is a zero-length
path. Let us consider a family {S(p) : p ∈ G} of digital rays, where a digital ray is uniquely
assigned to each p ∈ G. The family is called consistent if the following three conditions hold:
1. If q ∈ S(p), then S(q) ⊆ S(p).
2. For each S(p), there is a (not necessarily unique) boundary pixel r such that S(p) ⊆ S(r).
3. Each S(p) is a shortest path from o to p in G.

The consistency implies that the union of paths S(p) form a spanning tree T of G such
that all leaves are boundary pixels, and accordingly the intersection of two digital rays
consists of single connected component. See the pictures (a) and (b) of Figure 2for the
illustration. The tree T and also the family of digital rays are called CDR (Consistent Digital
Rays).

Previously, the theory has been considered only for digital straightness[11]. Lubby [14]
first gave a construction of CDR where each S(p) simulates a linear ray within Hausdorff
distance O(logn), and showed that the bound is asymptotically tight. Here, the Hausdorff
distance between objects P and Q is max{maxp∈P minq∈Q d(p, q),maxq∈Q minp∈P d(p, q)},
where d(p, q) is the Euclidean distance between p and q. The construction was re-discovered
by Chun et al.[5] to give further investigation, and Christ et al.[4] gave a construction of
consistent digital line segments where the lines need not go through the origin. There are
several works on different characterizations and variations [1, 2, 3].
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(a) (b) (c) (d)

Figure 2 CDR for linear rays and parabolic rays in the triangular region of a 20× 20 grid, and
sampled linear and parabola digital rays in a 300× 300 square grid.

We will extend the theory to families of curves with the same topology as linear rays. In
Figure 2, the combinatorial difference between two CDRs can be observed. The difference
leads to the visual difference of digital rays illustrated in Figure 2, where it can be seen that
the digital rays in (b) approximate parabolas as shown in (d) extended to a sufficiently large
grid, while (a) approximates linear rays as shown in (c).

A family F of nondecreasing curves in ∆ is called a ray family if each curve goes through
the origin o, and for each point (x, y) ∈ ∆ \ {o} there exists a unique curve of F going
through it. We call an element of F a ray. Accordingly, each pair of rays intersect each other
only at the origin. A typical example is the family of parabolas y = ax2 for a ≥ 0.

We give a construction method of CDR TF in G such that the (unique) ray of F connecting
o and a pixel p is approximated by the path S(p) of TF well. In order to theoretically gurantee
the goodness of the approximation, we give an O(

√
n logn) bound of the Hausdorff distance

for several ray families, where the unit is given by the pixel size. Although the theoretical
bound is much worse than the known Θ(logn) optimal bound for the linear ray [5, 14], it is
the first nontrivial result for curved rays as far as the authors know.

Then, we investigate the structure of unions of CDRs. Our results include a new
interpretation of CDS, and generalize it to a digitized pseudoline arrangement (i.e. set of
paths interesecting at monst once to each other) given as union of translated copies of a ray
family. Moreover, we deal with digitization of the arrangement given as a union of families
of constant degree homogeneous polynomial curves to show that they can be consistently
discretized to form a pseudoline arrangement in a subregion of ∆ excluding a constant
number of rows and columns, and a constant-area triangle.

We have implemented our construction algorithm of CDR for several families of rays,
and our experimental result shows that the Hausdorff distance is only 12 for n = 214 for the
parabola rays.

2 Consistent digital rays and their properties

The set of pixels of G on the diagonal x + y = k for k = 0, 1, . . . , n is called the level set
L(k). We implicitly give a direction of edges from lower towards higher levels, and call an
edge of G between nodes u ∈ L(k − 1) and v ∈ L(k) an incoming edge to (resp. outgoing
edge from) v (resp. u).

Consider a CDR T . Any node of T has exactly one incoming edge, and at most two
outgoing edges of T . The following observation was given by Chun et al.[5] (see Figure 3 for
its illustration).

ESA 2019



32:4 Digital Curved Rays

Figure 3 The branching nodes (colored yellow) and partition of incoming edges to the 5th level
(left picture) of the CDR (right picture) of linear rays.

I Lemma 1. In the level set L(k) for k ≥ 1, there exists a real value 0 < x(k) < k such
that the incoming edge of T to each node whose x-value is smaller than (resp. larger than
or equal to) x(k) is vertical (resp. horizontal). Accordingly, there exists a unique branching
node of T in L(k − 1) (colored yellow in Figure 3).

Thus, a CDR is completely characterized by the integer sequence dx(1)e, dx(2)e, . . . , dx(n)e,
where 1 ≤ x(i) ≤ i. We call x(k) the separating position on L(k). The following lemma is
easy to verify.

I Lemma 2. A (unique) CDR exists for each of (n− 1)! possible sequences as above.

Our task is to find a CDR among those candidates to approximate a given family of rays
as good as possible.

2.1 CDR for linear rays revisited
The CDR of linear rays can be obtained by selecting x(k) as uniformly as possible from [1, k].

Let us consider the binary representation k =
∑∞
i=0 a(i)2i of a natural number k. The

van der Corput sequence (see [12] ) is the sequence that is defined by a function V (k) =∑∞
i=1 a(i)2−i from natural numbers to [0, 1]. We remove V (0) = 0 from our consideration so

that the range becomes (0, 1]. For example, for 6 = 2 + 4 = 1102, V (6) = 0.112 = 1
2 + 1

4 = 3
4 .

Here, a sequence of digits with subscript 2 means 2-adic representation of numbers.
The van der Corput sequence is known to be a low discrepancy sequence: There is a

nonnegative constant c such that for each n and a range [a, b] in (0, 1], the number of k ≤ n
satisfying V (k) ∈ [a, b] differs from (b− a)n at most c logn. In particular, for each m < n,
the set {V (i) : m ≤ i 6= n} gives an almost uniform distribution on [0, 1].

We can set x(k) = kV (k) to obtain a CDR. This CDR is exactly same as the one given
by Chun et al.[5], and it has been shown that it approximates the linear rays emanating from
the origin with the optimal Θ(logn) distance bound. In order to generalize to the curved
rays, we give the following interpretation.

Consider a line y = ax intersecting x + y = k at q = (x0, k − x0). By definition, its
slope is a, which is k−x0

x0
. Naturally, we need to approximate the line segment of slope k−x0

x0
with a grid path in a neighborhood of q in order to globally approximate a line by the path.
Ideally the ratio of vertical edges to the horizontal edges in the path should be k−x0

x0
in the

neighborhood. If we set x0 = kt0, the ratio is 1−t0
t0

.
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By the definition of the separating position x(k), the edge incoming to q is vertical if and
only if q lies on the left of x(k). Let x(k) = kt(k) and we take t(k) = θ for a uniformly random
variable θ on (0, 1]. Then, q is on the left of x(k) if and only if t0 < θ, and its probability is
1− t0. Thus, the incoming edge becomes horizontal and vertical with probabilities t0 and
1− t0, respectively. Hence, the ratio between them is 1−t0

t0
as desired.

The construction can be derandomized by replacing θ by V (k) for each k. This deran-
domization also improves the Hausdorff distance bound.

We would like to extend this argument for other families of curves.

3 CDR for families of curves

Let us give a construction method of CDR applicable to several families of curves. We start
with a family of parabolas as a typical example for improving the readability, and then
discuss more general cases for which we will prove an upper bound for the Hausdorff distance
between rays and digital rays.

3.1 CDR for a family of parabolas

3.1.1 Construction of CDR

Figure 4 CDR Tpara. Green nodes are branching nodes. Red path gives a digital parabolic ray.

Let us consider the family y = ax2 (a ≥ 0) of parabolas that have the origin o as their
apex. We include the y-axis x = 0 in the family (this convention is applied to all other cases).

Consider a parabola C : y = ax2 intersecting the level x+ y = k at q = (x0, k − x0). The
slope of tangent at q is 2ax0, which is 2y0

x0
= 2(k−x0)

x0
= 2(1−t0)

t0
if we set x0 = kt0.

Analogously to the linear case, if we would like to have a digital ray nicely approximate
C, the curve C in a neighborhood of q should be approximated by a path that contains the
horizontal and vertical edges with the probabilities t0

2−t0 and 2(1−t0)
2−t0 , respectively.

Thus, we should select the separating position x(k) = kt(k) to be located on the left of q
with probability t0

2−t0 . We consider a monotonically increasing function Fk in the range [0, 1]
and set t(k) = Fk(θ) for the uniformly random variable θ on (0, 1]. The probability that
x0 = kt0 < x(k) is the probability that F−1

k (t0) < θ from the monotonicity of Fk. Because
of uniformity, this probability equals to F−1

k (t0).

ESA 2019
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Thus, we should set F−1
k (t) = t

2−t to meet our requirement, and Fk(θ) = 2θ
θ+1 . This

is indeed monotonically increasing as we desired1. We then derandomize the process by
replacing θ with V (k), and we set t(k) = 2V (k)

V (k)+1 and hence x(k) = 2kV (k)
V (k)+1 to construct a

CDR Tpara illustrated in Figure 4 deterministically.
The bound for the Hausdorff distance between a parabola ray and its corresponding

digital ray in Tpara is given in the following theorem, although its proof will be given later
for a more general form.

I Theorem 3. For each node p ∈ G, the Hausdorff distance between the parabola ray going
through p and the path S(p) from p towards the origin in the CDR Tpara is O(

√
n logn).

3.2 Homogeneous polynomials
Let us consider the family Fj of curves defined by y = fa(x) = axj for a ≥ 0. Here, the slope
of tangent of a curve at (x, y) is f ′a(x) = jaxj−1, which equals jy/x. Thus, analogously to the
parabola case, we have F−1

k (t) = t
j−(j−1)t and Fk(θ) = jθ

1+(j−1)θ . Applying derandomization
to replace θ by V (k), we set x(k) = jkV (k)

(j−1)V (k)+1 for k = 1, 2, . . . , n to define a CDR TFj . The
following theorem is analogously obtained to the parabola case.

I Theorem 4. For each node p ∈ G, the Hausdorff distance between the ray in Fj going
through p and the path S(p) from p towards the origin in the CDR TFj

is O(
√
n logn).

3.3 Handling general ray families
3.3.1 Framework for a diffused ray family
Recall that a family F of nondecreasing curves in ∆ is called ray family if each curve (called
ray) goes through the origin o, and for each point (x, y) ∈ ∆ \ {o} there exists a unique
curve of F going through it. We call a ray family smooth if every curve is differentiable.
Let us consider the slope τ(t, z) at p = (tz, z − tz) (0 < t ≤ 1) of the unique curve of F
going through p. We assume that we can compute τ(t, z) for a given p efficiently, and its
computation time will be regarded as the unit of the time complexity.

I Definition 5. A smooth ray family F is called diffused (resp. weakly diffused) if τ(t, z) is
continuous and decreasing (resp. nonincreasing) in t for each fixed z > 0.

Intuitively, the diffusedness means that the rays always expand: The distance between two
curves along the off-diagonal x+ y = k is increasing in k, since the right curve has a smaller
slope than the left one. It can be considered as a continuous counterpart of the property of
CDR given in Lemma 1 that vertical edges are incoming to the left of x(k) = kt(k) while
horizontal edges incoming to the right of it in each level L(k). The families of parabolas and
homogeneous polynomials are diffused.

Now, we consider construction of a CDR for a diffused family F . We want to control so
that the probability that the edge incoming to a pixel q = (tk, k − tk) in L(k) is horizontal
with probability gk(t) = 1

1+τ(t,k) , so that the ratio of probabilities to have a vertical edge
against a horizontal edge becomes τ(t, k) for each of t = j/k (j = 1, 2, . . . , k).

We would like to find a monotonically increasing function Fk such that t(k) = Fk(θ) for
a uniformly random variable θ on (0, 1] so that the incoming edge to (tk, k − tk) becomes
horizontal with probability gk(t).

1 The function Fk is independent of k, but it is not always true for the more general cases.
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Since the family is diffused, τ(t, k) is decreasing in t, and hence gk is increasing. Therefore,
it has the inverse function g−1

k that is also increasing.
We set Fk = g−1

k to attain our requirement. Indeed, the condition that x(k) lies on the
left of q is that t(k) < t, which means gk(t(k)) ≤ gk(t) because of the monotonicity of gk.
Since gk(t(k)) = gk(Fk(θ)) = θ, this happens if the value of θ is smaller than gk(t), and
hence the probability is gk(t) as we desire.

By evaluating Fk(θ) at a given θ, we have t(k) for k = 1, 2, . . . , n, and hence obtain
a CDR for F . Approximate evaluation is sufficient for our purpose, since only the value
dx(k)e = dkt(k)e is necessary for the construction of CDR. Since τ(t, z) can be computed in
the unit time, we can compute gk(t) Since gk(t) is an increasing function, the value dkt(k)e
for t(k) = tθ = Fk(θ) can be computed by binary searching over t ∈ {1/k, 2/k, . . . k − 1/k}
to find the value t0 such that g(t0 − 1/k) < θ ≤ g(t0).

We then derandomize the process replacing θ by V (k) for each k.

3.3.2 Upper bound of the Hausdorff distance
We give the analysis for the Hausdorff distance between a curved ray and its digitized ray.
We consider the derandomized version here, and the analysis for the randomized version
is given later.

For a differentiable curve C ∈ F , consider the intersection point pC(z) = (xC(z), z−xC(z))
with the line x+ y = z for 0 < z ≤ n. Let sC(z) be the slope of C at pC(z). Our analysis
depends on the property of the function sC(z).

I Definition 6. Given a function y = f(x) defined on an interval I, if I can be decomposed
into a minimum number of consecutive subintervals such that f(x) is monotone (either
nonincreasing or nondecreasing) on each subinterval, the number of subintervals is called
the wave number of f . It is infinity if there is no such decomposition into a finite number
of subintervals.

The wave number of sC(z) is intuitively the length of the alternating sequence of consec-
utive convex segments and concave segments of C.

I Definition 7. The wave number of F is the supremum of the wave numbers of sC(z) over
all C ∈ F on the interval (0, n] of z.

I Theorem 8. If F is a diffused family of rays with the wave number w, the Hausdorff
distance between the ray C going through p in F and the path P = S(p) from p towards the
origin in T detF is bounded by O(

√
wn logn) for any node p ∈ G.

For the families of parabolas and homogeneous polynomials, we can verify that the wave
number is 1, and thus we have Theorems 3 and 4 as corollaries.

In order to prove Theorem 8, we prepare two lemmas. The first one (Lemma 9) is
well-known (see e.g. [12]). The area of a planar region X is denoted by A(X).

I Lemma 9. Consider the set of points S = {(k, V (k)) : k = 0, 1, 2, . . . , n} in the region
X = [0, n] × [0, 1]. Then, for any axis parallel rectangle R in X, the difference (called
discrepancy) between the number of points in S ∩R and the area of A(R) is O(logn).

The following Lemma 10 gives a discrepancy bound of S with respect to a region below a
curve of a function.

ESA 2019
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I Lemma 10. Consider the set of points S = {(k, V (k)) : k = 0, 1, 2, . . . , n}. Let f(x)
be a continuous function from [0, n] to [0, 1] with a wave number w, and let QI(f) =
{(x, y) : 0 ≤ y ≤ f(x), x ∈ I} for any given interval I ⊂ [0, 1]. Then, the discrepancy
||S ∩QI(f)| −A(QI(f))| is bounded by c

√
wn logn for a suitable constant c.

Proof. Since we can decompose the interval I into w subintervals such that f is monotone
on each of them, it suffices to consider the case w = 1. Indeed, if subintervals have lengths
n1, n2, . . . , nw and has discrepancies c

√
ni logni for i = 1, 2, . . . , w, the sum

∑w
i=1 c
√
ni logni

is bounded by c
√
wn logn, where the minimum it attained if ni = n/w for every i. If w = 1,

f is either nonincreasing or nondecreasing, and without loss of generality, we assume f
is nondecreasing.

We divide QI(f) into its intersections with consecutive vertical strips of width
√
n logn

(possibly the last one is skinnier). Let Ai for i = 1, 2, . . . ,M = d
√
n/ logne be the strips.

Suppose si and ti are x-values of the leftmost and rightmost boundary of Ai, respectively.
Now, within the strip Ai, QI(f) is contained in a rectangle Ri whose height is f(ti), and
contains another rectangle R′i whose height is f(si). Since 0 ≤ f(x) ≤ 1 and f is nondecreasing
we can easily see that the difference of areas of ∪Mi=1Ri and ∪Mi=1R

′
i is at most the area of a

rectangle of height 1 and width
√
n logn. For a union of M rectangles, we can apply Lemma 9,

and the number of points of S in ∪Mi=1Ri is at most A(QI(f)) +
√
n logn+O(M logn), and

that in ∪Mi=1R
′
i is at least A(QI(f))−

√
n logn−O(M logn). Since M <

√
n/ logn+ 1, we

have the lemma. J

We remark that for the discrepancy in Lemma 10, an Ω(
√
n) lower bound is known even if f

is a linear function (see [12]).
Now let us give a proof for Theorem 8.
The basic idea is that if P goes too far from C on a level, then it cannot come back to

the same destination point p without violating the discrepancy condition given in Lemma 10.
Without loss of generality, we can assume that p is a boundary element located on

L(n). For each diagonal x + y = k, the intersection of C (resp. P ) with it is denoted
by qC(k) = (xC(k), yC(k)) and qP (k) = (xP (k), yP (k)), respectively. Then, the Hausdorff
distance is bounded by

√
2 max1≤k≤n |xC(k)− xP (k)|, and it suffices to show that there is a

constant c′ such that |xC(k)− xP (k)| ≤ c′
√
wn logn. We take c′ > c, where c is the constant

given in Lemma 10.
Assume on the contrary there exists an index s such that |xC(s)− xP (s)| > c′w

√
n logn.

Without loss of generality, we can assume that xC(s) > xP (s), since the other case can be
handled analogously.

There exists an indexm such that xC(i)−xP (i) > 0 for s ≤ i < m and xC(m)−xP (m) ≤ 0
because xP (n) = xC(n) (both P and C need to go through p). In other words, the path
P lies on the left of C in L(k) for s ≤ k < m and first comes back to the (almost) same
position on L(m). Let I be the interval (s,m]. Thus, we have

xP (m)− xP (s) > xC(m)− xC(s) + c′
√
wn logn. (*)

In the derandomized construction, V (k) is used (instead of θ) to determine t(k). In our
construction method, P has a horizontal incoming edge at L(k) if and only if gk(tP (k)) ≥ V (k),
where tP (k) = xP (k)

k . By the monotonicity of gk, gk(tC(k)) ≥ gk(tP (k)) if k ∈ I, and this
implies gk(tC(k)) ≥ V (k).

The integer-valued function xC(k) is extended to a continuous function xC(z) that gives
the x-value of the intersection point of x+ y = z and the ray C for a real value z ∈ (0, n].
Moreover, the function gk(t) = 1

1+τ(t,k) can be extended to g(t, z) = 1
1+τ(t,z) .
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We define ϕC(z) = g(tC(z), z) = 1
1+τ(tC (z),z) . Recall that τ(tC(z0), z0) = dy/dx|z=z0 is

the slope of C at z = z0, and hence

ϕC(z0) = 1
1 + dy

dx |z=z0

= dx

dx+ dy
|z=z0 = dx

dz
|z=z0 .

Thus, ϕC(z) is the ratio of the increase of xC(z) to the increase of z in the infinitesimal
neighbor of z0. The wave number of ϕC(z) is the same as that of τ(tC(z), z), since ϕC(z)
is increasing in an interval I if and only if τ(tC(z), z) is decreasing. We can observe that
τ(tC(z), z) = sC(z) by definition, and hence the wave number of ϕC(z) is the same as that
of sC(z), and bounded by w. Also, the range of ϕC(z) is in (0, 1].

If the incoming edge of P is horizontal, ϕC(k) = gk(tC(k)) ≥ V (k) as shown above,
and this condition is equivalent to (k, V (k)) ∈ QI(ϕC), since QI(ϕC) = {(z, x) : 0 ≤ x ≤
ϕC(z), s < z ≤ m}. Let S be the set of points (k, V (k)) for k = s, s + 1, . . . ,m − 1. The
difference of the x-values of P at z = s and z = m is the number of horizontal edges in the
interval, which is hence bounded by |QI(ϕC) ∩ S|.

On the other hand, A(QI(ϕC) equals the difference of x-value of C at s and m, since

A(QI(ϕC)) =
∫
s<z<m

ϕC(z)dz =
∫
s<z<m

dxC(z)
dz

dz = xC(m)− xC(s).

Since the wave number of ϕC is bounded by w and its range is in (0, 1], Lemma 10 says that
|QI(ϕC) ∩ S| −A(QI(ϕC)) < c

√
wn logn. Thus, we have

xP (m)−xP (s) ≤ |QI(ϕC)∩S| ≤ A(QI(ϕC))+c
√
wn logn = xC(m)−xC(s)+c

√
wn logn.

Therefore, xP (m) − xP (s) ≤ xC(m) − xC(s) + c
√
wn logn. Compared with (∗), we have

c > c′, and obtain a contradiction.

3.3.3 Analysis for the randomized version
We would like to mention the quality of the randomized construction of a CDR.

I Definition 11. Consider a continuous function f defined on an interval I = (k,m] with
the range [0, 1], where 0 < k < m < n are positive integers. let f̄ be the linear interpolation
using the values of f on integer abascissae, which is the piecewise linear curve connecting
(k, f(k)), (k + 1, f(k + 1)), . . . , (m, f(m)) by linear segments of width 1. The discretization
error of f on I is |A(QI(f))−A(QI(f̄))|.

The following is easy to see.

I Lemma 12. If the wave number of f is bounded by w, the discretization error of f is at
most w.

Now, given a function f from [0, n] to [0, 1], consider a {0, 1}-valued random variable
Xf (i) for each i = 1, 2, . . . , n such that it becomes 1 if and only if a uniformly randomly
number (chosen independently for each i) in [0, 1] becomes less than or equals to f(i).
Let Xf =

∑n
i=1 Xf (i). Then the expected value E(X) =

∑n
i=1 E(Xi) equals

∑n
i=1 f(i) =

A(QI(f̄)) + f(m)−f(k)
2 . Note that A(QI(f̄)) ≤ n, thus E(X) ≤ n+ 1/2.

We can apply Chernoff’s inequality, and obtain a constant c(r) such that |X −Q(f̄)| ≥
c(r)
√
n logn with a probability 1 − n−r−3 for any given constant r. Now we are ready to

analyze the randomized construction of CDR.
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I Theorem 13. If F is a diffused family of rays with the wave number w, the largest Hausdorff
distance between a ray and the corresponding digital ray in T randF is O(

√
n logn+ w) with

probability 1− n−r for any fixed r > 0.

Proof. Analogously to the deterministic version, For any path p in the CDR corresponding
a curve C = C(p) ∈ F , the Hausdorff distance from p to C is bounded by the maximum
difference of A(QI(ϕ(C))) and XQI (ϕ(C) over all I. Since there are O(n) paths from the
root to leaves, and there are O(n2) intervals [k,m], there are O(n3) choices. Thus, with
probability 1−n−r, |A(QI ¯(ϕ(C(p))))−X(QI(ϕ(C(p)))| ≤ c(r)

√
n logn for all p and I. Thus,

we have the theorem. J

The above upper bound is worse than the deterministic version by a
√

logn factor if w is
a small constant, while it is theoretically better if w > logn.

3.4 Family of curves linear in a parameter
Let us consider a nondecreasing differentiable function y = f(x) for x ∈ [0, n] such that
f(0) = 0 and f(x) > 0 for x > 0. We define the family F = {Ca : a ≥ 0} of curves, where
Ca is defined by y = af(x). It is clear that this gives a ray family.

If Ca goes through (x0, y0), then a = y0
f(x0) . The slope of the curve Ca at (x0, y0) is

af ′(x0), which is (eliminating a) f ′(x0)y0
f(x0) . We consider the slope τ(x, k) = (k−x)f ′(x)

f(x) along
the diagonal x+ y = k for each k.

If F is diffused, the framework in the previous subsection works. Although the explicit
form of Fk might not be obtained, we can apply binary search to compute Fk(z) for a given
z utilizing the monotonicity. Thus, we can compute x(k) = kFk(V (k)) within the pixel
precision in O(logn) time.

Diffusedness and the wave number depend on f . The following lemma is easy to observe.

I Lemma 14. If f is a strictly increasing and concave function, the family F is diffused,
and its wave number is 1.

Note that the family of rays {y = f(a−1x) : a > 0} for a convex function f can be
also handled, since this family is {x = af−1(y)} and f−1(y) is a concave function, e.g., the
families of parabolas and homogeneous polynomials could be regarded in this form. Let us
see some typical examples.

I Example 15. Let Fsig be the family of curves y = aσ(x), 0 ≤ a, where σ(x) = 1
1+e−x − 1

2
is the shifted sigmoid function. The curve y = σ(x) is strictly increasing and concave; hence,
the family is diffused with the wave number 1, and we have the O(

√
n logn) bound.

Here, τ(x, k) = (k−x)e−x

(1+e−x)2σ(x) . The function gk = F−1
k can be analytically given, but it is

a complicated function such that it is difficult to find an explicit formula for Fk. Thus, we
apply the binary searching method to find a value of Fk(V (k)) in our experiment.

I Example 16. Consider the family of curves y = a log(x + 1), then similarly we have a
CDR with the O(

√
n logn) distance bound.

I Example 17. The sine curve y = sin(x) is not monotone. Therefore, we define ˜sin(x) by
˜sin(x) = 0 for x < 0, ˜sin(x) = sin x for 0 ≤ x ≤ π/2 and ˜sin(x) = 1 for x > π/2. The curve
y = ˜sin(x) is monotonically nondecreasing and differentiable, and we will apply our CDR
construction for the family of curves y = a ˜sin(x) for a ≥ 0.
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Here, the family is weakly-diffused but not diffused, since there are many parallel horizontal
lines intersecting each level. However, it is clear that in the region x > π/2 where the rays
becomes horizontal, we can set all edges horizontal. Thus, we can still apply our method to
have the O(

√
n logn) bound.

The obtained CDRs are illustrated in Figure 6 in the section to give experimental results.

4 Union of CDRs with consistency

A CDR is characterized by the sequence m : m(1),m(2), . . .m(n) where 1 ≤ m(i) = dx(k)e ≤
k, and we denote the CDR by T (m). We denote m �m′ if m(i) ≥ m(i)′ for all 1 ≤ i ≤ n.
� is a partial ordering. We write m �m′ if m �m′ and m 6= m′.

Consider P(T (m))∪P(T (m′)), where P(T ) means the set of paths from the root towards
leaf vertices in T .

Let xP (k) be the x-value of the pixel of a path P (from the root to a leaf) in a CDR on
the level L(k).

I Definition 18. We say a path P1 is steeper than another path P2 in a different CDR if
there is an index 0 ≤ k ≤ n such that xP1(i) ≤ xP2(i) for i ≤ k and xP1(i) > xP2(i) for i > k.
We say the level L(k) the break level of P1 and P2.

The above definition implies that P1 lies below or on P2 up to the break level, and
it lies strictly above P2 after it. We allow k = n, which means P1 never goes above P2.
We say the pair of paths have a singular separation on a level L(i) if xP1(i) = xP2(i) and
xP1(i + 1) > xP2(i + 1). Thus, the paths cross each other at most once, although they
may touch and singularly separate several times before the break level. We say P1 and P2
semi-consistently intersect if one is steeper than the other. Moreover, if there is no singular
separation, we say they consistently intersect each other.

I Theorem 19. If m �m′, any path P1 ∈ P(T (m)) is steeper than any path P2 ∈ P(T (m′)).
Moreover, if a singular separation happens on a level L(i), m(i+1) = m′(i+1) = xP1(i)+1 =
xP2(i) + 1.

Proof. Since m �m′, if a vertical edge comes in p ∈ L(k) in Tm′ , a vertical edge comes in
p in Tm, too. This further implies that if such p is located on the right of another pixel q on
L(k), every incoming edge to q must be also vertical in both trees.

Therefore, if P2 lies strictly on the right of P1 on a level L(k), whenever P2 selects a
vertical incoming edge in L(k+ 1) , P1 also must select a vertical edge. Thus, inductively the
horizontal distance never decreases after the break level, and hence P1 never meets P2 again.

Next, we consider what happens at a singular separation. Then, P1 and P2 goes through a
same point p = (x, k−x) in a level L(k), and P1 selects a horizontal and P2 selects a vertical
edge towards L(k + 1). Then, the vertices of P1 and P2 are at positions q = (x+ 1, k − x)
and q′ = (x, k + 1− x), respectively. Since the incoming edge of Tm to q is horizontal and
that of Tm′ to q′ is vertical, m(i+ 1) ≤ x+ 1 and m′(i+ 1) > x. Since m(i+ 1) ≥ m′(i+ 1),
this happens only if m(i+ 1) = m′(i+ 1) = x+ 1. J

We note that the conditionm(i+1) = m′(i+1) = xP1 +1 = xP2 +1 for a singular level L(i)
means that both Tm and Tm′ have the branching node p = (m(i+ 1)− 1, i−m(i+ 1) + 1) on
the level L(i) simultaneously. Both P1 and P2 goes through p, and P1 selects the horizontal
while P2 selects the vertical branch. We say a node p a singular point if it is a shared
branching node of Tm a Tm′ , and hence a singular separation only occurs at a singular point.
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A region R ⊆ ∆ is called a slanted-quadrant if it is defined as {(x, y) ∈ ∆ | x ≥ a, y ≥
b, x+y ≥ c} for nonnegative numbers a, b, and c. We say a set of digital rays semi-consistently
(resp. consistently) approximates a family of curves intersecting at most once to each other
in a slanted-quadrant R if each pair of digital rays semi-consistently (resp. consistently)
intersect each other if they are restricted to G ∩R.

Suppose that families F and F ′ has CDRs T (m) and T (m′) for m � m′, respectively.
Assume that F ∪ F ′ forms a pseudoline arrangement in a slanted quadrant R. Theorem 19
assures that P(T (m)) ∪ P(T (m′)) consistently approximates F ∪ F ′ in R if there is no
singular point in R.

4.1 Union of translated copies of a CDR
For the sequence m and a nonnegative integer s, we define a new sequence ms by ms(k) =
min(m(k)+s, k). Similarly, for a negative integer s, we define ms byms(k) = max(m(k)+s, 1).
The following lemma is obvious.

I Lemma 20. If s ≥ 1, ms �m. If s ≤ −1, m �ms.

I Theorem 21. Suppose that F and Fs are ray families digitized by T (m) and T (ms),
respectively. Assume that F ∪ Fs forms a pseudoline arrangement in ∆1 : {(x, y) ∈ ∆ | x ≥
1, y ≥ 1}. Then P(T (m)) ∪ P(T (ms)) consistently approximate F ∪ Fs in ∆1.

Proof. Semi-consistency is clear from Theorem 19 and Lemma 20. Consider the location of
a singular point p = (m(i+ 1)− 1, i−m(i+ 1) + 1) for a pair of paths. However, Theorem 19
says that m(i + 1) = ms(i + 1). This only happens either m(i + 1) = ms(i + 1) = 1 or
m(i + 1) = ms(i + 1) = i + 1, and hence p = (0, i) or p = (i, 0). Thus the singular points
only locate on the coordinate axises. Thus, we have the theorem. J

For a CDR T = T (m), we define UK(T ) = ∪−K≤i≤KP(T (ms)). It follows from The-
orem 21 that UK(T ) consistently approximates a pseudoline arrangement represented as a
union of associated ray families.

I Example 22 (Consistent digital line arrangement). Let us consider the family F1 of linear
rays. Define Fs1 for s ≥ 0 (resp. s ≤ −1) to be the set of rays starting with horizontal
(resp. vertical) rays, and continue to linear rays with positive slopes emanating from (s,−s).
Let T be the CDR for F1 constructed in Section 2.1. Then UK(T ) consistently digitize
∪−K≤s≤KFs1 in ∆1 with the O(logn) distance bound.

Indeed, for s > 0, the structure of T (ms) in ∆ ∩ {(x, y) : x ≥ s} is same as the tree
obtained by connecting the forest of T ∩{(x, y) : y ≥ s} by a horizontal path. The case s < 0
is similar. Thus, the discrepancy bound remains as same as the one for T .

Note that although we only consider the lines with positive slopes, we can easily mix it
with those with negative slopes (obtained by a mirror construction) without losing consistency.
The above example shows that we can consistently digitize the line segments in the first
quadrant. However, it is weaker than [4] since we only deal with segments on the lines going
through (s,−s) for integers s, and we need a finer precision to represent short segments.

I Example 23 (Consistent digital pseudoline arrangement of shifted parabola rays). Let us
consider the family F2 consisting of curves defined by y = ax2 (a > 0). Define Fs2 to be
the set of the right halves of parabolas with the apex (s,−s). Then UK(Tpara) consistently
digitize ∪−K≤s≤KFs2 in ∆1 with the O(

√
n logn) distance bound.
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4.2 Union of homogeneous polynomial families
In this section, we assume that the CDRs are constructed deterministically. Let us consider
Fi,j = Fi ∪ Fj for 1 ≤ i ≤ j, where Fi is the family of homogeneous polynomial curves of
degree i. Let m(i) be the sequence (do not confuse this with ms given above) corresponding
to TFi

deterministically constructed. Naturally, each pair of curves f ∈ Fi and g ∈ Fj
intersect once in the first quadrant other than the origin, and thus behaves as a pseudoline
arrangement in the region x > 0, y > 0. We consider the union Ti,j = P(TFi

) ∪ P(TFj
) to

approximate curves in Fi,j .

I Lemma 24. m(j) �m(i) for 1 ≤ i ≤ j.

Proof. Recall that x(k) = jkV (k)
(j−1)V (k)+1 in the construction of TFj

. Thus, m(j)(k) =
d jkV (k)

(j−1)V (k)+1e. Since
ikV (k)

(i−1)V (k)+1 ≤
jkV (k)

(j−1)V (k)+1 if i < j, we have the lemma. J

I Theorem 25. T1,2 consistently approximates F1,2 in the region {(x, y) ∈ ∆ | x ≥ 3, y ≥ 3}.
For i ≥ 2, Ti,i+1 consistently approximates Fi,i+1 in the region R(i) = {(x, y) ∈ ∆ | x+ y ≥
4(i+ 1)(i+ 2), x ≥ 4i, y ≥ 4(i+ 1)}.

Proof. Ti,i+1 semi-consistently approximates Fi,i+1 in ∆, although the existence of multiple
singular points prevents the consistency.

Thus, we study location of singular points to find a subregion R to attain the consistency.
Consider a singular point p in a level L(k). Recall that p = (m(i)(k+1), k−m(i+1)(k+1))

and m(i)(k + 1) = m(i+1)(k + 1) at a singular point p in a level L(k). Since m(i)(k + 1) =
m(i+1)(k + 1), we have

(i+ 1)(k + 1)V (k + 1)
iV (k + 1) + 1 − i(k + 1)V (k + 1)

(i− 1)V (k + 1) + 1 < 1.

For the case i = 1, suppose that a singular point appears on L(k), and let v = V (k + 1),
and K = k + 1. Then we have 2Kv

v+1 − Kv < 1, which means Kv(1 − v) < v + 1. We
assume that K ≥ 6 and 3

K ≤ v ≤ 1− 3
K . Then, Kv(1− v) ≥ 3(1− 3

K ) = 3− 9
K and hence

3− 9
K < 1 + 1− 3

K and hence K < 6, and we have contradiction.
Thus, k + 1 < 6 or (k + 1)v < 3 or (k + 1)v > k + 1 − 3 = k − 2. The position of the

singular point p is d(k + 1)ve, k − d(k + 1)ve, and hence it is located either in the region
x+ y ≤ 4, x ≤ 2 or y ≤ 2. Thus, we have the theorem for T1,2.

For i ≥ 2, p = (m(i)(k+1), k−m(i)(k+1)) and m(i)(k+1) = m(i+1)(k+1) at the singular
point p. For simplifying the formulas, we set K = k+ 1, v = V (k+ 1), and c = 2(i+ 1)(i+ 2).
We assume K > 2c since otherwise the singular point is outside R.

Now, we have

(i+ 1)Kv
iv + 1 − iKv

(i− 1)v + 1 < 1.

This is transformed to

Kv(1− v) < (iv + 1)((i+ 1)v + 1). (∗)

We will first show that it gives a contradiction if 4
K ≤ v ≤ 1− c

K .
For the case where 1/2 ≤ v ≤ 1− c

K , v(1− v) take its minimum at v = 1− c
K , and the

right hand side is at most (i+ 1)(i+ 2). Thus we have

K
c

K
(1− c

K
) = c(1− c

K
) < (i+ 1)(i+ 2)
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Since K > 2c, c(1− 1/2) < (i+ 1)(i+ 2) and hence c < 2(i+ 1)(i+ 2) and it contradicts the
definition of c.

If 1
i+1 ≤ v <

1
2 , substituting K > 4(i+ 1)(i+ 2), (∗) implies that

4(i+ 1)(i+ 2)v(1− v) < (iv + 1)((i+ 1)v + 1).

Cleaning up the formula, we have

−(5i2 + 13i+ 8)v2 + (4i2 + 10i+ 7)v − 1 < 0.

Since v < 1/2, we replace v2 by v/2, we have

−(5i2 + 13i+ 8)v2 + (4i2 + 10i+ 7)v − 1 < 0.

And hence (3i2 + 7i+ 6)v < 2. This does not happen if v ≥ 1
i+1 .

If 4
K ≤ v ≤

1
i+1 , the left hand of (∗) takes minimum at v = 4

K , and the right hand takes
maximum at v = 1

i+1 , and we have

4(1− 4
K

) < 22i+ 1
i+ 1 .

Since K > 4(i+ 1)(i+ 2),

1− 1
(i+ 1)(i+ 2) < 1− 1

2(i+ 1) .

This does not happen since i+ 2 > 2.
Thus, we have either v < 4

K or v > 1− c
K .

In the former case that v < 4
K . The x-value of the singular point is d iKv

(i−1)v+1e.
iKv

(i−1)v+1
is monotonically increasing in v (if v > 0). Thus, we have it is less than 4i

1+4(i−1)/K , which
takes maximum at K =∞. Thus, the x-value of the singular point is less than 4i.

In the latter case, consider the y- value k − d (i+1)Kv
iv+1 e of the singular point, which is

at most K − (i+1)Kv
iv+1 = K−Kv

iv+1 . It takes the maximum c
i(1− c

K )+1 at v = 1 − c
K , and since

K > 2c it is less than 2c
i+2 = 4(i+ 1). J

The following is a straightforward corollary.

I Corollary 26. Ti,j consistently approximates Fi,j for any j > i in the region R(i). Accord-
ingly, T≤d = ∪1≤i≤dP(Ti) consistently approximates Hd = ∪1≤i≤dFi in the region R(d− 1).

5 Experimental results

We have implemented our method and constructed CDR for the constant-multiplied curves.
Figure 5 and Figure 6 illustrate CDRs for polynomial curves, sine, sigmoid, and loga-
rithmic rays.

Figure 7 shows the selected paths approximating the curves towards equally-spaced
sampled points on the boundary of square regions.

For each grid width n = 2m up to n = 214, the worst-case Hausdorff distance between
parabolas and digital rays in Tpara is given in Figure 8, where it is about 12 for n = 214. The
dependency of worst-case Hausdorff distance on n have the similar behavior for each of other
types of curve.

The error for n = 214 is about 11.2, 13.4, 15.0 for sine, sigmoid and logarithmic curves,
respectively. Note that the values are real numbers since we consider Hausdorff distance
based on Euclidean distance.
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(a) (b) (c)

Figure 5 CDRs for (a) y = ax2, (b) y = ax3, and (c) y = ax4. Green nodes are branching nodes.
Red paths are the digital curves towards p = (15, 15).

(d) (e) (f)

Figure 6 CDRs for (d) y = a ˜sinx (0 ≤ x ≤ π/2), (e) y = aσ(x)(x ≤ 6), and (f) y = a log(x+ 1).
Green nodes are branching nodes. Red paths are the digital curves towards p = (15, 15).

(a) (b) (c)

(d) (e) (f)

Figure 7 Sampled Curves of CDRs for (a) y = ax2, (b) y = ax3, (c) y = ax4, (d) y = a ˜sinx
(0 ≤ x ≤ π/2), (e) y = aσ(x)(x ≤ 6), and (f) y = a log(x+ 1) in the 300× 300 grid.
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Figure 8 The largest distance from a parabola and the corresponding digital ray in Tpara.

6 Concluding remarks

The experimental result suggests that our O(
√
n logn) bound seems to be loose. Although

currently the lower bound mentioned for Lemma 10 prevents us to improve it beyond O(
√
n),

recent progress on low-discrepancy sequences [16] might be applied.
For the line segments, a construction of consistent digital segments (CDS) is known [4]

with O(logn) distance error bound. Although we have a generalization of CDS to handle
some families of curves, there are a lot of questions to invest further: For example, we do not
know how to handle the set of all axis parallel parabolas.
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