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Abstract Zone diagrams are a variation on the classical concept of Voronoi
diagrams. Given n sites in a metric space that compete for territory, the zone dia-
gram is an equilibrium state in the competition. Formally it is defined as a fixed point
of a certain “dominance” map. Asano, Matoušek, and Tokuyama proved the existence
and uniqueness of a zone diagram for point sites in the Euclidean plane, and Reem
and Reich showed existence for two arbitrary sites in an arbitrary metric space. We
establish existence and uniqueness for n disjoint compact sites in a Euclidean space of
arbitrary (finite) dimension, and more generally, in a finite-dimensional normed space
with a smooth and rotund norm. The proof is considerably simpler than that of Asano
et al. We also provide an example of non-uniqueness for a norm that is rotund but not
smooth. Finally, we prove existence and uniqueness for two point sites in the plane
with a smooth (but not necessarily rotund) norm.
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1202 A. Kawamura et al.

1 Introduction

Zone diagrams are a metric notion somewhat similar to the classical concept of Voronoi
diagrams [4,11]. Let (X, dist) be a metric space and let P = (P1, . . . , Pn) be an
n-tuple of nonempty subsets of X called the sites. To avoid unpleasant trivialities, we
will always assume in this paper that the sites are closed and pairwise disjoint.

A zone diagram of the n-tuple P is an n-tuple R = (R1, . . . , Rn) of subsets of X ,
called the regions of the zone diagram, with the following defining property: Each
Ri consists of all points x ∈ X that are closer (non-strictly) to Pi than to the union⋃

j �=i R j of all the other regions.
Informally, one can imagine that the sites compete for territory, and a site Pi can

defend only a territory Ri that is closer to Pi than to all the territories of the other sites.
A zone diagram is an equilibrium state in this “war game”.

Figure 1 shows a zone diagram in the Euclidean plane whose sites are points and
segments. While in the Voronoi diagram the regions partition the whole space, in a
zone diagram the union of the regions typically has a nonempty complement, called
the neutral zone.

The definition of a zone diagram is implicit, since each region is determined in
terms of the remaining ones. So neither existence nor uniqueness of the zone diagram
is obvious, and so far only partial results in this direction have been known.

Asano et al. [2] introduced the notion of a zone diagram, for the case of n point
sites in the Euclidean plane, and in this setting they proved existence and uniqueness.
The proof involves a case analysis specific to R

2. Chun et al. [7] showed the existence
and uniqueness of the two-site zone diagram in Euclidean plane when one site is a
point and the other is a line. Reem and Reich [12] established, by a simple and elegant
argument, the existence of a zone diagram for two sites in an arbitrary metric space
(and even in a still more general setting, which they call m-spaces).

On the negative side, they gave an example of a three-point metric space in which
the zone diagram of two point sites is not unique; thus, uniqueness needs additional

Fig. 1 A zone diagram of
points and segments
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Zone diagrams in Euclidean spaces 1203

assumptions. On the other hand, for all we know, it is possible that a zone diagram
always exists, for arbitrary sites in an arbitrary metric space.

1.1 Arbitrary sites in Euclidean spaces

In this paper, we establish the existence and uniqueness of zone diagrams in Euclidean
spaces. This generalizes the main result of [2] with a considerably simpler argument.
For the case of two point sites in the plane, we also obtain a new and simpler proof
of the existence and uniqueness of the distance trisector curve considered by Asano
et al. [3].

Theorem 1.1 Let the considered metric space (X, dist) be R
d with the Euclidean

distance. For every n-tuple P = (P1, . . . , Pn) of nonempty closed sites in R
d such

that dist(Pi , Pj ) > 0 for every i �= j , there exists exactly one zone diagram R.

The full proof is contained in Sects. 2 (general preliminaries) and 3. The same
proof yields existence and uniqueness also for infinitely many sites in R

d , provided
that every two of them have distance at least ε (for some fixed ε > 0). Moreover, with
some extra effort it may be possible to extend the proof to compact sites in a Hilbert
space, for example, but in this paper we restrict ourselves to the finite-dimensional
setting.

1.2 Normed spaces

We also investigate zone diagrams in a more general class of metric spaces, namely,
finite-dimensional normed spaces.1 Normed spaces are among the most important clas-
ses of metric spaces. Moreover, as we will see, studying arbitrary norms also sheds
some light on the Euclidean case. Earlier Asano and Kirkpatrick [1] investigated dis-
tance trisector curves (which are essentially equivalent to two-site zone diagrams) of
two point sites under polygonal norms in the plane, obtaining results for the Euclidean
case through approximation arguments.

For us, a crucial observation is that the uniqueness of zone diagrams does not hold for
normed spaces. Let us consider R

2 with the �1 norm ‖·‖1, given by ‖x‖1 = |x1|+|x2|.
It is easy to check that the two point sites (0, 0) and (0, 3) have at least two different
zone diagrams, as drawn in Fig. 2. This example was essentially contained already in
Asano and Kirkpatrick [1], although in a different context.

The �1 norm differs from the Euclidean norm in two basic respects: the unit ball
has sharp corners and straight edges; in other words, the �1 norm is neither smooth
nor rotund.

1 A finite-dimensional (real) normed space can be thought of as the real vector space R
d with some norm,

which is a mapping that assigns a nonnegative real number ‖x‖ to each x ∈ R
d so that ‖x‖ = 0 implies

x = 0, ‖αx‖ = |α| · ‖x‖ for all α ∈ R, and the triangle inequality holds: ‖x + y‖ ≤ ‖x‖ + ‖y‖. Each
norm ‖·‖ defines a metric by dist(x, y) := ‖x − y‖. For studying a norm ‖·‖, it is usually good to look at
its unit ball {x ∈ R

d : ‖x‖ ≤ 1}. The unit ball of any norm is a closed convex body K that is symmetric
about 0 and contains 0 in the interior. Conversely, any K ⊂ R

d with the listed properties is the unit ball of
a (uniquely determined) norm.
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1204 A. Kawamura et al.

Fig. 2 Two different zone diagrams under the �1 metric (drawn in the grid with unit spacing)

Fig. 3 Rotundity and smoothness of norms

We recall that a norm ‖·‖ on R
d is called smooth if the function x �→ ‖x‖ is differ-

entiable off the origin (geometrically, the unit ball of a smooth norm has no “sharp cor-
ners”; see Fig. 3). The property that we are actually going to use in the proof is uniform
smoothness, which can be formulated as follows: The function ρ : (0,∞) → [0,∞)

defined by

ρ(t) := sup

{‖u − tv‖ + ‖u + tv‖
2

− 1 : ‖u‖ = ‖v‖ = 1

}

, (1)

the modulus of smoothness, satisfies ρ(t) = o(t) as t → 0. A compactness argument
shows that every smooth finite-dimensional Banach space is also uniformly smooth
(we refer, e.g., to [5] or [8] for this and other facts on norms mentioned without proofs).

Notions dual to smoothness and uniform smoothness are rotundity and uniform
convexity, respectively. A norm ‖·‖ on R

d is called rotund (or strictly convex) if for all
x, y ∈ R

d with ‖x‖ = ‖y‖ = 1 and x �= y we have ‖ x+y
2 ‖ < 1. Geometrically, the

unit sphere of ‖·‖ contains no segment. A rotund norm on a finite-dimensional space
is also uniformly convex, which means that for every ε > 0 there is μ = μ(ε) > 0
such that if x, y are unit vectors with ‖x − y‖ ≥ ε, then

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥ ≤ 1 − μ.

The Euclidean norm ‖·‖2, and more generally, the �p norms with 1 < p < ∞, are
both rotund and smooth. We have the following generalization of Theorem 1.1:
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Zone diagrams in Euclidean spaces 1205

Theorem 1.2 Let the considered metric space (X, dist) be R
d with a norm ‖·‖ that

is both smooth and rotund. For every n-tuple P = (P1, . . . , Pn) of nonempty closed
sites in R

d such that dist(Pi , Pj ) > 0 for every i �= j , there exists exactly one zone
diagram R.

The proof for the Euclidean case, i.e., of Theorem 1.1, is set up so that it generalizes
to smooth and rotund norms more or less immediately; there is only one lemma where
we need to work harder—see Sect. 4.

Our current proof method apparently depends both on smoothness and on rotundity.
In Sect. 5 we show that smoothness is indeed essential, by exhibiting a non-smooth
but rotund norm in R

d with non-unique zone diagrams. On the other hand, we suspect
that the assumption of rotundity in Theorem 1.2 can be dropped. Currently we have a
proof (see Sect. 6) only in a rather special case:

Theorem 1.3 For two point sites P0 = {p0} and P1 = {p1} in the plane R
2 with a

smooth norm, there exists exactly one zone diagram.

There have been some new developments since a preliminary version of the pres-
ent paper [9] has been published. Kopecká et al. [10] proved the existence of a zone
diagram for every finite collection of pairwise disjoint compact sites contained in a
compact convex subset of a uniformly convex normed space. (Unlike in our setting,
the space can be infinite-dimensional.) The proof is based on an idea of Kopecká,
briefly mentioned in Asano et al. [2], but in the general case it needs additional tricks.

de Biasi et al. [6] introduced a weakening of the notion of a zone diagram, which
they call a maximal zone diagram (or a mollified zone diagram in a newer manuscript).
Instead of requiring Ri = dom(Pi ,

⋃
j �=i R j ) as in the definition of a zone diagram,

they only want that, for each i, Ri ⊆ dom(Pi ,
⋃

j �=i R j ), and moreover, the n-tuple
(R1, R2, . . . , Rn) should be maximal w.r.t. this condition in the � order (see Sect. 2
below for the notation dom and �). Every zone diagram is a maximal zone diagram,
but not conversely, as they show by examples.

2 Preliminaries

Here we introduce notation and present some results from the literature, some of them
in a more general context than in the original publications.

Let (X, dist) be a general metric space. The closure of a set A ⊆ X is denoted
by A, while ∂ A stands for its boundary. The (closed) ball of radius r centered at x is
denoted by B(x, r).

For sets A, B ⊆ X , not both empty, we define the dominance region of A over B
as the set

dom(A, B) := { x ∈ X : dist(x, A) ≤ dist(x, B) },

where

dist(C, D) := inf
x∈C, y∈D

dist(x, y) ∈ [0,+∞]
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1206 A. Kawamura et al.

denotes the distance between the sets C and D.
Let us fix an n-tuple P = (P1, . . . , Pn) of sites, i.e., nonempty subsets of X (which,

as above, we assume to be disjoint and closed). For an n-tuple R = (R1, . . . , Rn)

of arbitrary subsets of X , we define another n-tuple of regions R′ = (R′
1, . . . , R′

n)

denoted by Dom R and given by

R′
i := dom

⎛

⎝Pi ,
⋃

j �=i

R j

⎞

⎠ , i = 1, . . . , n

(the sites are considered fixed and they are a part of the definition of the operator
Dom).

The definition of a zone diagram can now be expressed as follows: An n-tuple R
is called a zone diagram for the n-tuple P of sites if R = Dom R (componentwise
equality, i.e., Ri = dom

(
Pi ,

⋃
j �=i R j

)
for all i).

For two n-tuples R and S of sets, we write R � S if Ri ⊆ Si for every i . It is
easily seen (see, e.g., [2]) that the operator Dom is antimonotone, i.e., R � S implies
Dom R � Dom S. Our starting point in the proofs of Theorems 1.1 and 1.2 is the
following general result.

Theorem 2.1 For every n-tuple P of sites (in any metric space), there exist n-tuples
R and S such that R = Dom S and S = Dom R, and moreover, for every n-tuples
R′, S′ with R′ = Dom S′ and S′ = Dom R′, we have R � R′ and S′ � S (and in
particular, R � S).

A special case of this result, for point sites in the Euclidean plane, was first proved
by Asano et al. [2, Lemma 5.1], while the general case is due to Reem and Reich [12].
We recall their proof for the reader’s convenience.

Proof We use the following theorem of Knaster and Tarski (see [13]): If L = (L ,�)

is a complete lattice and g : L → L is a monotone mapping, then g has at least one
fixed point (i.e., x ∈ L with g(x) = x), and moreover, there exists a smallest fixed
point x0 and a largest fixed point x1, i.e., such that x0 � x � x1 for every fixed point x.

To prove Theorem 2.1, we let L be the system of all ordered n-tuples D such
that Pi ⊆ Di for every i . It is easy to check that L = (L ,�) (where � is defined
as above) is a complete lattice. Let g := Dom2; that is, g(D) := Dom(Dom D).
Then we let R be the smallest fixed point of g as in the Knaster–Tarski theorem, and
S := Dom R. Clearly Dom S = Dom2 R = g(R) = R. Moreover, if R′ and S′ satisfy
R′ = Dom S′ and S′ = Dom R′, then R′ and S′ are both fixed points of Dom2, and
thus R � R′, S′ � S as claimed. ��

Let us remark that the earlier proof by Asano et al. [2] can easily be extended so that
it yields the special case of Theorem 2.1 where the metric space is a finite-dimensional
normed space with a rotund norm (and the sites are arbitrary). This is discussed in
more detail in an ArXiv version of the present paper [9]. That proof is still of some
interest, since it is more “constructive” than the one shown above, in that the alleged
n-tuples R and S are obtained by an iterative process.
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Zone diagrams in Euclidean spaces 1207

We finish this section with a simple geometric lemma. It was used, in a less general
setting, in [2] (proof of Lemma 4.3).

Observation 2.2 Let P be an n-tuple of sites (in an arbitrary metric space), and sup-
pose that ε := mini �= j dist(Pi , Pj ) > 0 and that R and S satisfy R = Dom S and
S = Dom R. Then dist(Pi ,

⋃
j �=i S j ) ≥ ε

2 , and consequently, the ε
4 -neighborhood of

each Pi is contained in Ri .

Proof We recall the simple proof from [2]. We first note that V = (V1, . . . , Vn) :=
Dom P is the classical Voronoi diagram of P, and the open ε

2 -neighborhood of Pi does
not intersect

⋃
j �=i V j . Since P � R, we have Dom P � Dom R = S, and hence the

open ε
2 -neighborhood of Pi is disjoint from

⋃
j �=i S j as well, as claimed. ��

3 The Euclidean case

Here we prove Theorem 1.1; throughout this section, dist denotes the Euclidean dis-
tance. In addition to Theorem 2.1 and Observation 2.2, we also need the next lemma.

Lemma 3.1 (Cone lemma, Euclidean case) Let P be an n-tuple of (nonempty closed)
sites in R

d with the Euclidean metric such that ε := mini �= j dist(Pi , Pj ) > 0, and let
R and S satisfy R = Dom S and S = Dom R. Let a be a point of some Ri , and let
p ∈ Pi be a point of the corresponding site closest to a (such a nearest point exists
by compactness). Then the set

K := conv
({a} ∪ B(p, ε

4 )
)

is contained in Ri ; see Fig. 4.

The following proof is rather specific for the Euclidean metric (the lemma fails for
the �1 metric, for example).

Proof Both a and B(p, ε
4 ) are contained in dom(p,

⋃
j �=i S j ) (the latter by

Observation 2.2). For the Euclidean metric, the dominance region of a point over any set
is convex, since it is the intersection of halfspaces. Hence K ⊆dom(p,

⋃
j �=i S j )⊆ Ri .

��
Now we describe the general strategy of the proof of Theorem 1.1. With R and S

as in Theorem 2.1, it suffices to prove R = S. For contradiction, we assume that it is
not the case, i.e., that R := ⋃n

i=1 Ri is properly contained in S := ⋃n
i=1 Si ; see the

schematic illustration in Fig. 5.

Fig. 4 The cone K
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1208 A. Kawamura et al.

Fig. 5 The setting of the proof of Theorem 1.1 (a schematic picture)

For a point b ∈ S\ ⋃n
i=1 Pi , let s(b) := dist(b, Pi ) be the distance from the nearest

site Pi , and let p = p(b) ∈ Pi be a point where this distance is attained. Let a = a(b)

be the closest point to b that lies in the intersection of Ri with the segment bp. It is
easily seen, using the triangle inequality, that p is also a nearest point of Pi to a. Thus,
the set K in Lemma 3.1 is contained in Ri , and in particular, a is the only intersection
of the segment bp with ∂ Ri . We set δ(b) := dist(b, a). The parameters s(b) and δ(b)

will measure, in some sense, how much S differs from R “at b”.
Assuming R �= S, we choose a point b0 ∈ S\R. Then, using b0, we find b1 ∈ S \ R

where S differs from R “more than” at b0. Iterating the same procedure we obtain an
infinite sequence b0, b1, b2, b3, . . . of points, and the difference will “grow” beyond
bounds, while, on the other hand, it has to stay bounded—and this way we reach a
contradiction.

More concretely, for every integer t ≥ 1 we will construct bt from bt−1 so that,
with s := s(bt−1), s′ := s(bt ), δ := δ(bt−1), and δ′ := δ(bt ), we have

(A) s′ ≤ s − α, or
(B) s′ ≤ s − δ and δ′ ≥ δ,

where α > 0 is a constant that depends on s0 := s(b0) and ε, but not on t .
Thus, as t increases, s(bt ) keeps decreasing. Since s(bt ) is bounded from below by

ε
4 by Observation 2.2, case (A) can happen only finitely many times. Therefore, from
some t on, we have case (B) only. But this also causes s(bt ) to decrease towards 0—a
contradiction.

It remains to describe the construction of bt from bt−1, and this is done in the next
lemma.

Lemma 3.2 For every s0 and ε > 0 there exists α > 0 such that if b ∈ S\R satisfies
s := s(b) ≤ s0, then there exists another point b′ ∈ S\R such that s′ := s(b′), δ :=
δ(b) and δ′ := δ(b′) satisfy (A) or (B).

Proof Let b ∈ Si , let a := a(b), p := p(b), and write r = dist(a, p); see Fig. 6.
Since a ∈ ∂ Ri and R = Dom S, there exist j �= i and b′ ∈ S j with dist(a, b′) = r . If
there are several possible b′, we choose one of them arbitrarily.
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Zone diagrams in Euclidean spaces 1209

Fig. 6 The construction of b′

First we check that b′ /∈ R, or in other words, that δ′ > 0. During this step we
also derive a lower bound for δ′ that will be useful later. Since b ∈ S, a′ ∈ R, and
S = Dom R, we have dist(a′, b) ≥ s. Then we bound, using the triangle inequality,

δ′ ≥ dist(a′, b) − dist(b, b′) ≥ s − dist(b, b′). (2)

Supposing for contradiction that δ′ = 0, we get dist(b, b′) ≥ s. But the triangle
inequality gives dist(b, b′) ≤ dist(b, a) + dist(a, b′) = r + δ = s, and hence the
triangle inequality here holds with equality. For the Euclidean metric, this can hap-
pen only if a lies on the segment bb′, and then b′ has to coincide with p, which is
impossible. So δ′ > 0 indeed.

Next, since S = Dom R and b′ ∈ S, we have s′ ≤ dist(b′, Ri ). An obvious upper
bound for dist(b′, Ri ) is dist(b′, a) = r = s − δ, and thus the first inequality in (B),
namely, s′ ≤ s − δ, always holds.

Moreover, if δ ≥ α, then s′ ≤ s − δ ≤ s − α, and we have (A). For the rest of the
proof we thus assume that δ < α (where α hasn’t been fixed yet—so far we’re free to
choose it as a positive function of ε and s0 in any way we like).

Let us consider the ball B(b′, r); see Fig. 7. If it contains b, as in the left picture,
we have dist(b′, b) ≤ r , and thus by (2) we have δ′ ≥ s − r = δ. Then (B) holds.
Thus, the last case to deal with is b /∈ B(b′, r).

Let us consider the cone K = conv({a} ∪ B(p, ε
4 )) as in Lemma 3.1. Its opening

angle γ is bounded away from 0 in terms of ε and s0; indeed, we have γ ≥ ε/4s0
(here and in the further steps we use that r and s are bounded from below by ε and
from above by s0).

Let 	 be a 2-dimensional plane containing p, a, b′; it also contains b since p, a, b
are collinear. Let k be the ray originating at a and containing b, and let l be the ray in
	 originating at a and making the angle π − γ

2 with k (on the side of b′); see Fig. 7
right.

Since the angle between the rays k and l is bounded away from the straight angle,
the Euclidean ball B(b′, r) cuts a segment of significant length from at least one of
these rays. This length can be bounded from below by a positive quantity β depend-
ing only on s0 and ε. Indeed, in the extreme case where k and l make the same
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1210 A. Kawamura et al.

Fig. 7 The r -ball around b′

Fig. 8 Bounding the quantity β

from below in the Euclidean case

angle γ
4 with the tangent of B(b′, r), shown in Fig. 8, easy trigonometry yields β =

2r sin γ
4 .

So far we have not fixed α, and so now we can make sure that α < β. Since we
assume b /∈ B(b′, r), the segment of length β cut out by B(b′, r) can’t belong to the
ray k. So the situation is as in Fig. 7 right: B(b′, r) contains the initial segment ac of
l of length β. Hence dist(b′, c) ≤ r .

The distance dist(c, R
d \ K ) is bounded away from 0 in terms of β and γ , and so

we may fix α so that dist(c, R
d \ K ) ≥ α.

Let c′ be the point where the segment b′c meets the boundary of K . We
have

dist(b′, K ) ≤ dist(b′, c′) = dist(b′, c) − dist(c, c′) ≤ r − dist(c, R
d \ K ) ≤ r − α.

Then, finally, using K ⊆ Ri , we have

s′ ≤ dist(b′, Ri ) ≤ dist(b′, K ) ≤ r − α < s − α,

and so (A) holds. This concludes the proof of Lemma 3.2, as well as that of
Theorem 1.1. ��

4 The case of smooth and rotund norms

In this section we establish Theorem 1.2. We begin with the part where the proof
differs from the Euclidean case: the cone lemma. In the Euclidean case, we used the
fact that for points p �= q, dom(p, q) is a halfspace, and consequently, dom(p, X) is
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Fig. 9 The dominance region of
the point (0, 0) against (2, 1) in
the �4 norm

Fig. 10 The dominance region
of a point against a halfspace

convex for arbitrary X . For other norms dom(p, q) need not be convex, though; see
Fig. 9.

We have at least the following convexity result.

Lemma 4.1 Let us consider R
d with an arbitrary norm ‖·‖, let H be a closed half-

space, and let p /∈ H be a point. Then dom(p, H) is convex.
Consequently, if the complement of a closed set A ⊆ R

d is convex and p /∈ A, then
dom(p, A) is convex.

Proof Let x /∈ H be a point and let x∗ ∈ ∂ H be a point where dist(x, H), the distance
of x to H measured by ‖·‖, is attained. If y /∈ H is another point and y∗ ∈ ∂ H is the
point such that the vectors x − x∗ and y − y∗ are parallel, then ‖y − y∗‖ = dist(y, H);
see Fig. 10.

Now let x, y ∈ dom(p, H), let x∗, y∗ be as above, set z := (x + y)/2, and let z∗
be defined analogously to y∗. Then we get dist(z, H) = ‖z − z∗‖ = (‖x − x∗‖ +
‖y − y∗‖)/2 = (dist(x, H)+ dist(y, H))/2. From this z ∈ dom(p, H) is immediate,
since ‖p− z‖ ≤ (‖p− x‖+‖p− y‖)/2 ≤ (dist(x, H)+dist(y, H))/2 = dist(z, H).
This proves the first part of the lemma.

The second part follows easily: A can be expressed as a union of closed halfspaces
H , and dom(p, A) is the intersection of the convex sets dom(p, H). ��

Now we prove a cone lemma, similar to Lemma 3.1:

Lemma 4.2 (Cone lemma for rotund norms) Let ‖·‖ be a rotund norm on R
d . Sup-

pose that an n-tuple P of sites satisfies ε := mini �= j dist(Pi , Pj ) > 0, and R and
S satisfy R = Dom S and S = Dom R. Then for every s0 > 0 there is ρ > 0
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1212 A. Kawamura et al.

Fig. 11 The sets C (shaded)
and D

(also depending on ε and on ‖·‖) such that the following holds: If a ∈ Ri with
r := dist(a, Pi ) ≤ s0 and p ∈ Pi is a point attaining the distance dist(a, Pi ), then
the set

K := conv
({a} ∪ B(p, ρ)

)

is contained in Ri .

Proof As in the Euclidean case, we begin by observing that a ∈ dom(p,
⋃

j �=i S j )

and also B(p, ε
4 ) ⊆ dom(p,

⋃
j �=i S j ) by Observation 2.2. Thus, the set D :=B(a, r)∪

B(p, ε
2 ) is contained in the closure of R

d \ ⋃
j �=i S j . We now want to find an open

convex subset C ⊆ D such that a and B(p, ρ) are contained in dom(p, R
d\C), since

the latter region is convex by Lemma 4.1 and thus it contains K as well.
We let C be the interior of conv(B(a, r) ∪ B(p, 2ρ)) with ρ sufficiently small (the

restrictions on it will be apparent from the proof below); see Fig. 11. It is clear that
{a} ∪ B(p, ρ) ⊆ dom(p, R

d \ C), and so it remains to prove C ⊆ D.
To this end, it is sufficient to prove the following: If B := B(0, 1) is the unit ball

of ‖·‖ and η > 0 is given, then there exists δ > 0 such that for every x ∈ R
d with

‖x‖ ≤ 1 + δ, the “cap” conv(B ∪ {x}) \ B has diameter at most η. This is a well-
known and easily proved property of uniformly convex norms. (Proof sketch: If x
with ‖x‖ = 1 + δ has a cap of large diameter, then there is z of norm 1 and half of
the diameter away from x such that the line xz avoids the interior of B. Let y be the
other intersection of this line with ∂B(0, 1 + δ)—then xy is a long segment that cuts
in B(0, 1 + δ) into depth only δ.) ��
Proof (Proof of Theorem 1.2) The overall strategy of the proof is exactly as for
Theorem 1.1 (see Sect. 3). The constant α in (A) may also depend on the consid-
ered norm ‖·‖. This quantification also needs to be added in the appropriate version
of Lemma 3.2.

In the proof of that lemma, the first place where we use a property not shared by all
norms is below (2); we need that the triangle inequality may hold with equality only
for collinear points—this remains true for all rotund norms.

Then we proceed as in the Euclidean case, introducing the the cone K = conv({a}∪
B(p, ρ)) as in Lemma 4.2. There is some γ > 0, depending on ε, s0, and the norm
‖·‖, such that the appropriate Euclidean cone with opening angle γ is contained in K .
(Here and in the sequel we implicitly use the fact that every norm on R

d is between
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two constant multiples of the Euclidean norm, which is well known and immediate
by compactness. All angles are measured in the usual Euclidean sense.)

We define the rays k and l, again following the Euclidean proof. For the next step,
we need that, since the angle between these rays is bounded away from the straight
angle, at least one of the rays k, l cuts a segment of significant length β from the ball
B(b′, r). Instead of an explicit formula as in the Euclidean case, we use the uniform
smoothness of the norm (formula (1) in Sect. 1); thus, β also depends on the modulus
of smoothness of the norm. The rest of the proof goes through unchanged. ��

5 Non-uniqueness examples

As we saw in the introduction, two point sites with the same x-coordinate have at least
two zone diagrams under the �1 metric. Here we show that only the non-smoothness
(sharp corners) of the �1 unit ball is essential for this example, while the straight edges
can be replaced by curved ones.

Proposition 5.1 There exists a rotund norm in the plane, arbitrarily close to the �1
norm, such that two distinct point sites with the same x-coordinate have (at least) two
different zone diagrams.

The appropriate norm is not difficult to describe, but proving the non-uniqueness of
the zone diagram is more demanding, since it seems hard to find an explicit description
of a zone diagram for non-polygonal norms.

Informally, we construct the desired norm by slightly “inflating” the unit ball of
the planar �1 norm, so that the edges bulge out and the norm becomes rotund. It is
important that the inflation is asymmetric, as is schematically indicated in Fig. 12 (in
the “real” example we inflate much less). We will denote the resulting norm by ‖·‖(1);
the subscript should remind the reader of “inflated �1” graphically.

To explain the purpose of the asymmetry in our example, we consider the bisector
of the points p = (−1, 1) and q = (1,−1), i.e., the set of all points equidistant to p
and q. For the �1 norm, the bisector is “fat”, as shown in Fig. 13 left—it consists of a
segment and two quadrants. By a small inflation, which makes the norm rotund, the

Fig. 12 A schematic illustration
of the unit ball of ‖·‖(1)
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Fig. 13 The bisector of p and q under the �1 norm and under ‖·‖(1) (schematic)

Fig. 14 The conditions in Lemma 5.2

middle segment of the bisector is changed only very slightly, but the “ambiguity” of
the �1 bisector in the quadrants is “resolved”, and the quadrants collapse to (possibly
curved) rays. Now if the inflation were symmetric, we would get straight rays with
slope 1 in the bisector, but with an asymmetric inflation, we can get a (positive) slope
as small as we wish.

In order to establish the required properties of the bisector formally, a safe route
(if perhaps not the most conceptual one) is to describe ‖·‖(1) analytically. The rays
of the bisector will be slightly curved rather than straight, but for the zone diagram
construction this will do as well.

Lemma 5.2 For every ε > 0 there exists a rotund norm ‖·‖(1) in the plane, whose
unit ball contains the �1 unit ball and is contained in the octagon as in Fig. 14 left,
such that the portion of the bisector of the points p = (−1, 1) and q = (1,−1) lying
in the quadrant { (x, y) : x, y ≥ 1 } is an x-monotone curve lying below the line
y = ε(x − 1) + 1 (Fig. 14 right).

Proof The construction has two positive parameters, α and δ, where α is small and δ

is still much smaller.
We let ‖·‖′ be the Euclidean norm scaled by α in the horizontal direction; that is,

‖(x, y)‖′ = √
α2x2 + y2. Let ‖·‖′′ be the �1 norm scaled by a suitable factor β (close
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to 1) in the vertical direction: ‖(x, y)‖′′ = |x | + β|y|. The norm ‖·‖(1) is obtained as
a′‖·‖′ + a′′‖·‖′′, where a′, a′′ > 0 are suitable coefficients. This obviously yields a
norm, which is rotund since ‖·‖′ is rotund.

We want the contribution of ‖·‖′ to be small compared to that of ‖·‖′′, and that the
corners of the unit ball of ‖·‖(1) coincide with those of the �1 unit ball. This finally
leads to the formula

‖(x, y)‖(1) := δ

√

α2x2 + y2 + (1 − αδ)|x | + (1 − δ)|y|.

Figure 12 is actually obtained from this formula with δ = 0.7 and α = 0.5. It is easy to
check that, as the picture suggests, ‖·‖(1) ≤ ‖·‖1 (and thus the �1 unit ball is contained
in the ‖·‖(1) unit ball), and for δ is sufficiently small in terms of α and ε, the unit ball
of ‖·‖(1) is contained in the octagon as in the lemma.

It remains to investigate the bisector of p and q for x ≥ 1 and y ≥ 1. For con-
venience, we translate p and q by (−1,−1) and scale by 1

2 . Then the bisector is
given by the equation ‖(x + 1, y)‖(1) = ‖(x, y + 1)‖(1), with the region of inter-
est being the positive quadrant x, y ≥ 0. For x, y ≥ 0, the absolute values can be
removed, δ disappears from the equation, and we obtain

√
α2(x + 1)2 + y2 +1−α =√

α2x2 + (y + 1)2. This can be solved for y explicitly, with the only positive root

y = 1 − α

2 − α

(√
1 + 2αx + 2αx2 − 1 + α

1 − α
x

)

.

This is the equation of the bisector curve in the positive quadrant. It is a simple exer-
cise in calculus (distinguishing the cases αx ≤ 1 and αx > 1, say) to show that
y ≤ C

√
α x for all x > 0 and all sufficiently small α (here C is a suitable constant). ��

Proof (Proof of Proposition 5.1) We show that the zone diagram of the sites p− =
(0,−1) and p+ = (0,+1) under the norm ‖·‖(1) as in the lemma, with ε sufficiently
small, is not unique.

First we consider the zone diagram only inside the vertical strip V := [−2, 2]×R.
Let R+

0 be the region as in Fig. 15, i.e., the part of the region of p+ within V in an

Fig. 15 The regions
R+

0 , S+
0 , R−

0 , S−
0 in the

vertical strip V
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Fig. 16 The region S̃+ defined
using bisectors, and a region
containing R̃−

�1 zone diagram of p−, p+. Let S+
0 be obtained by pulling the bottom vertex of R+

0
downward by η (which is another small positive parameter), and let R−

0 , S−
0 be the

reflections of R+
0 , S+

0 by the x-axis.
Let us consider the region dom(p−, R+

0 ) inside V (distances measured by our norm
‖·‖(1)). For every point x ∈ V below R+

0 , the ‖·‖(1)-distance to R+
0 coincides with

the �1 distance, which is simply the length of the vertical segment from x to ∂ R+
0 .

From this it is clear that dom(p−, R+
0 ) ⊇ R−

0 (since R−
0 is the dominance region of

p− against R+
0 in the �1 metric, and ‖·‖(1) ≤ ‖·‖1). Moreover, it’s easy to check that

for ε (the parameter controlling the choice of ‖·‖(1)) sufficiently small, we also have
dom(p−, R+

0 ) ⊆ S−
0 .

Thus, we have R−
0 ⊆ dom(p−, R+

0 ) ⊆ S−
0 , and by the vertical symmetry we also

get R+
0 ⊆ dom(p+, R−

0 ) ⊆ S+
0 . Arguing as in the proof of Theorem 2.1, we get

that there exist regions R+, R−, S+, S−, where R− is the reflection of R+, S− is
the reflection of S+, such that R−

0 ⊆ R+ ⊆ S+, and (R−, S+) is a zone diagram
of (p−, p+) (and so is (S−, R+), but we actually have R+ = S+, although we will
neither need this nor prove it).

All of this refers to the vertical strip V (so, formally, the metric space in these
arguments is V with the ‖·‖(1) metric). Now we move on to the full plane R

2, and we
let S̃+ be the region consisting of S+ plus two parts of the upper halfplane outside V
as in Fig. 16: The right part is delimited by a part of the bisector of p+ and (2,−1)

(drawn thick), and the left part by a part of the bisector of p+ and (−2,−1).
Now we set R̃− := dom(p−, S̃+). The distance of points inside V \ S+ to S̃+ is

still the vertical distance, i.e., the same as the distance to S+, and so R̃− ∩ V = R−.
For the part of R̃− outside V , we don’t need an exact description—it is sufficient
that it lies below the dashed rays in Fig. 16 (using the property of the bisectors as in
Lemma 5.2, one can see that these rays can be taken as steep as desired, by setting ε

sufficiently small). From this we can see that for every point of the upper halfplane on
the right of V , the nearest point of R̃− is the corner (2,−1).

Therefore, dom(p+, R̃−) = S̃+, and hence (R̃−, S̃+) is a zone diagram of
(p−, p+). But the mirror reflection of this zone diagram about the x-axis yields
another, different zone diagram. ��
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6 Smooth norms in the plane

Proposition 5.1 showed that the assumption of smoothness in Theorem 1.2 cannot be
dropped, even for the simplest case of two singleton sites in the plane. Theorem 1.3,
which we will prove here, states that the rotundity assumption can be dropped in this
special case.

Smoothness of the norm means that a metric ball has a unique supporting halfspace
at every point of its boundary. Thus, for a nonzero vector a, we can define �>

a to be the
open halfspace that touches (but does not intersect) the ball B(−a, ‖a‖) at the origin.
We write �=

a for the boundary of �>
a and let �≥

a = �>
a ∪ �=

a . For nonzero vectors a
and b, define a ∼ b when �>

a = �>
b . Then ∼ is an equivalence relation. It is easy to

see (Fig. 17) that for nonzero vectors a1, …, am , we have

‖a1 + · · · + am‖ = ‖a1‖ + · · · + ‖am‖ if and only if a1 ∼ · · · ∼ am . (3)

Lemma 6.1 Let ‖·‖ be a smooth norm on R
d . Then there is a positive number β such

that for any unit vectors u, v with ‖u + v‖ > 2 − β, we have ‖u − βv‖ ≤ 1.

Proof For unit vectors u and v with v ∈ �>
u , let αu,v be the length of the part of

the line u + Rv that lies inside the unit ball. Thus αu,v is the unique positive num-
ber with ‖u − αu,vv‖ = 1. Since αu,v is continuous in u and v, so is f (u, v) =
max{αu,v, 2 − ‖u + v‖}. We extend f by setting f (u, v) = 2 − ‖u + v‖ > 0 for
v /∈ �>

u . Since f is a lower semi-continuous function defined for all pairs of unit
vectors, it attains a minimum. Let β be this minimum. ��
Lemma 6.2 Let ‖·‖ be a smooth norm on R

d . For any κ > 0, there is ε > 0 such that,
for any vectors u, v with ‖u‖, ‖v‖ ≥ 1 and ‖u−v‖ < ε, we have dist(y, B(u, ‖u‖)) ≤
κ‖y‖ for any y ∈ B(v, ‖v‖).
Proof Since dist(y, B(u, ‖u‖)) ≤ 2ε, it is clear that, for any constant η > 0, the claim
holds if we consider only those y with ‖y‖ ≥ η. Therefore, it suffices to prove the
existence of η > 0, depending on ‖·‖ and κ , such that the claim holds for any y with
‖y‖ < η.

We find the desired η and ε as follows (Fig. 18). Since the norm is smooth, the
surface of a ball looks like a hyperplane locally at each point. Thus, there exists η > 0

Fig. 17 ‖a + b‖ = ‖a‖ + ‖b‖ if and only if a ∼ b (Eq. (3) with m = 2)
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Fig. 18 When u and v are close, y ∈ B(v, ‖v‖) is not very far from B(u, ‖u‖)

Fig. 19 The conclusion of
Lemma 6.3 states that dom(v, u)

and the boundary of B(u, 1)

“make a positive angle” at the
origin. We prove this by showing
that there is a cone (shaded)
whose axis is the tangent
vector w and which does not
overlap dom(v, u)

such that for any u ∈ R
d with ‖u‖ ≥ 1 and any z ∈ �≥

u with ‖z‖ < η(1 + κ/2), we
have dist(z, B(u, ‖u‖)) ≤ κ‖z‖/(2+κ). Also, since changing slightly a vector u with
‖u‖ ≥ 1 moves �≥

u only slightly, there is ε > 0 so small that for any vectors u, v

with ‖u‖, ‖v‖ ≥ 1 and ‖u − v‖ < ε, we have dist(y,�≥
u ) ≤ κ‖y‖/2 for all y ∈ �≥

v .
Since y ∈ B(v, ‖v‖) ⊆ �≥

v , we have dist(y,�≥
u ) ≤ κ‖y‖/2 by our choice of ε.

Let z ∈ �≥
u be a point attaining this distance. Since ‖z‖ ≤ ‖y‖ + ‖z − y‖ ≤ ‖y‖ +

κ‖y‖/2 = ‖y‖(1+κ/2) ≤ η(1+κ/2), we have dist(z, B(u, ‖u‖)) ≤ κ‖z‖/(2+κ) ≤
κ‖y‖/2 by our choice of η. These imply dist(y, B(u, ‖u‖)) ≤ κ‖y‖ by the triangle
inequality. ��
Lemma 6.3 Let‖·‖be a smooth norm on R

2. For unit vectors u andv with‖u−v‖ < 2,
there is κ > 0 such that for all y ∈ dom(v, u)\B(v, 1) sufficiently close to the origin
(Fig. 19), dist(y, B(u, 1)) > κ‖y‖.

Proof Because ‖u − v‖ < 2, the vectors u and −v do not share the supporting half-
space. Therefore, there is a (unique) unit vector w ∈ �=

u that heads out of B(v, 1).
Since

lim
δ→0

‖u − δw‖ − 1

δ
= 0, β := lim

δ→0

‖v − δw‖ − 1

δ
> 0,
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there exists δ0 > 0 so small that for all positive δ < δ0, we have

‖u − δw‖ − 1

δ
<

1

3
β,

‖v − δw‖ − 1

δ
>

2

3
β,

and hence ‖u − δw‖ < ‖v − δw‖ − βδ/3. This implies that ‖u − x‖ < ‖v − x‖ for
all x ∈ B(δw, βδ/6). Thus, dom(v, u) is disjoint from a cone (except at the origin)
whose vertex is at the origin and axis is the vector w (see Fig. 19). This implies the
assertion of the lemma. ��

Now we look at the situation of Theorem 1.3. Let R = (R0, R1) and S = (S0, S1) be
pairs as in Theorem 2.1. As before, it suffices to show that R = S. Suppose otherwise.
Then h = min{dist(p0, S0\R0), dist(p1, S1\R1)} exists.

Lemma 6.4 In the above setting, if a point c ∈ S0\R0 satisfies ‖c − p0‖ = h, then

(a) ‖c − p1‖ = 2h;
(b) there is a point c′ ∈ S1\R1 satisfying ‖c′ − c‖ = ‖c′ − p1‖ = h.

Proof Note that c ∈ R0, since otherwise S0\R0 intersects a part of the segment cp0
of positive length, contradicting the minimality of h.

There is a sequence (xi )i∈N of points in S0 \ R0 that converges to c. For each
i ∈ N, let yi ∈ S1 be a closest point to xi . Since xi ∈ S0 \ R0, we have ‖yi − xi‖ =
dist(xi , S1) < ‖p0 − xi‖ and yi ∈ S1\R1. The sequence (yi )i∈N has a subsequence
(y ji )i∈N that converges to a point c′ ∈ S1\R1 (Fig. 20). Note that

‖c′ − p1‖ ≤ ‖c − c′‖ = lim
i→∞‖x ji − y ji ‖ ≤ lim

i→∞‖p0 − x ji ‖ = ‖p0 − c‖ = h,

where the first inequality is by c′ ∈ S1 and c ∈ R0. In fact, this holds in equality by
the minimality of h. We have proved (b).

Fig. 20 Lemma 6.4
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For each i , since S1\R1 intersects a part of the segment y ji c
′ of positive length,

y ji /∈ B(p1, h) by the minimality of h. Also, y ji ∈ S1 ⊆ dom(p1, c). As i increases,
y ji comes arbitrarily close to c′. Hence, if (a) were not true, Lemma 6.3 would give
a constant κ > 0 such that dist(y ji , B(c, h)) > κ‖y ji − c′‖ for all but finitely many
i . On the other hand, since y ji is in B(x ji , ‖x ji − c′‖) and (x ji )i∈N converges to c,
Lemma 6.2 shows that dist(y ji , B(c, h)) ≤ κ‖y ji −c′‖ for all but finitely many i . This
is a contradiction. We have proved (a). ��
Lemma 6.5 In the above setting, ‖p0 − p1‖ = 3h.

Proof By the definition of h, there is a point c ∈ S0 \ R0 satisfying ‖c − p0‖ = h. By
Lemma 6.4(b), there is a point c′ ∈ S1\R1 satisfying ‖c′ − c‖ = ‖c′ − p1‖ = h. By
Lemma 6.4(a) (and the same lemma with the sites swapped), ‖c − p1‖ = ‖c′ − p0‖ =
2h. This implies (c − p0) ∼ (c′ − c) ∼ (p1 − c′) and thus ‖p0 − p1‖ = 3h by (3) at
the beginning of this section. ��

To prove Theorem 1.3, we will construct a sequence (bt )t∈N of points in R \ S, as
we did in Sect. 3. Recall that for each i ∈ {0, 1} and b ∈ Si , we define a(b) to be
the closest point to b that is in the intersection of Ri with the segment bpi (note that
since we do not have the cone lemma this time, the intersection of bpi and ∂ Ri is not
always unique). As before, let s(b) = ‖b − pi‖ and δ(b) = ‖b − a(b)‖.

The proof goes as follows. This time, we begin with a point b0 ∈ S0\R0 that is
within distance h+ε from the nearest site, for some small ε > 0 (such a point b0 exists
by the definition of h), and take b1, b2, …as we did in Sect. 3 using Lemma 3.2: For
each bt ∈ Si\Ri , we let bt+1 ∈ S1−i\R1−i be a point that is at the same distance from
a(bt ) as pi is. Then each bt will be also within distance h + ε from the nearest site pi .
Because we have proved that the sites are 3h apart, and the path pi -a(bt )-bt+1-p1−i

consists of three segments shorter than h +ε, this path must be “almost straight”. This
implies that we will always have the case (B) in Sect. 3 (Fig. 7 left):

Lemma 6.6 In the above setting, the following holds for some ε > 0: For each
i ∈ {0, 1} and b ∈ Si\Ri satisfying s := s(b) < h + ε, there is b′ ∈ S1−i\R1−i

such that δ := δ(b), s′ := s(b′), δ′ := δ(b′) satisfy (B) of Sect. 3 (i.e., δ′ ≥ δ and
s′ ≤ s − δ).

Proof Let ε := hβ/3, where β is as in Lemma 6.1. Let b be as assumed. By the
definition of a := a(b), there is b′ ∈ S1−i with ‖b′ − a‖ = ‖a − pi‖. We show that
this b′ qualifies. Since s′ = ‖b′ − p1−i‖ ≤ ‖b′ −a‖ = ‖a − p1−i‖ = s − δ, it suffices
to prove that δ′ ≥ δ (which would then imply b′ /∈ R1−i ).

By Lemma 6.5, we have

‖b′ − pi‖ ≥ ‖p1−i − pi‖ − ‖p1−i − b′‖ = 3h − s′ > 3h − s ≥ 3h − (h + ε)

= 2(h + ε) − 3ε ≥ 2(h + ε) − βh > (h + ε)(2 − β) > ‖a − pi‖(2−β).

By this and ‖b′−a‖ = ‖a− pi‖, Lemma 6.1 yields ‖(b′−a)−β(a− pi )‖ ≤ ‖a− pi‖.
This remains true if we decrease β, since B(0, ‖a − pi‖) is convex. So we replace β

by ‖b−a‖/‖a − pi‖ ≤ ε/h ≤ β/3 < β, obtaining ‖b′ −b‖ = ‖(b′ −a)−(b−a)‖ ≤
‖a − pi‖.
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Since b is in Si and a′ := a(b′) is in R1−i , we have ‖a′ − b‖ ≥ s. Hence, δ′ =
‖b′ − a′‖ ≥ ‖a′ − b‖ − ‖b′ − b‖ ≥ s − ‖a − pi‖ = δ, as desired. ��

The rest of the argument is similar to what we have already seen in Sect. 3 (and
even simpler because we do not have case (A) this time): Starting at b0 ∈ S\R such
that s(b0) < h + ε, where ε is as in Lemma 6.6, we define bt+1, for each t ∈ N, to
be the point b′ corresponding to b = bt . By the lemma, s(bt ) always decreases by at
least δ(b0), leading to a contradiction. This proves Theorem 1.3.
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