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1. INTRODUCTION 

Determinantal method is a powerful tool to study invariants and 
representations of classical groups. Let R, = Z![x,,,],, , = 1, 2 ,,,,, n be the 
integral coordinate ring of the module of all n x n integral matrices. In [7], 
Doubilet, Rota, and Stein gave a beautiful theory on combinatorial 
approach to invariant theory using a nice basis of R, called standard basis 
whose elements are simply parametrized by means of “standard tableaux.” 
This standard basis also occurs in the theory of flag manifolds (cf. [12], 
[17]). As application of this theory, Procesi and DeConcini gave many 
results on the characteristic free approach to the invariants and represen- 
tation spaces of classical groups [4], [S J, 161. 

In particular, a representation space of each finite dimensional 
irreducible representation of GL(n, C) is realized in R, @I C canonically. 
This representation space plays a key roll in application to physics, since 
each weight vector in this representation space is actually an element of 
standard basis. Now let us consider the tensor product representation of 
two arbitrarily irreducible representations pi, and pfl of GL(n, @). Tensor 
product representations have deep relation with the interaction of particles 
(cf. [Z]). The branching rule of the tensor product representation pA @ pp 
into its irreducible constituents is described using combinatorial methods 
on Young diagrams. This rule, the Littlewood-Richardson rule, was first 
found by Littlewood [14] and proved rather recently (cf. [15]). However, 
in application to physics, not only the branching rule but also more 
detailed information of the representation spaces of tensor product 
representations is required. In case of GL(2, C), the decomposition of 
pj.@pp is multiplicity free. So in this case, each weight vector of each 
irreducible constituent of pj.@pP is canonically described in terms of the 
standard bases of pi, and p,,, whose coefficients are called Wigner coef- 
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ficients (cf. [2]). Wigner coefficients are generalized and known for many 
other multiplicity-free branchings. However, in case of the branchings with 
nontrivial multiplicities, even the definition of the Wigner coefficients itself 
is obscure. Unfortunately, if n is larger than 2, the tensor product represen- 
tations of GL(n, C) usually branch with nontrivial multiplicities. In this 
paper, we shall give an expression of the highest weight vectors of 
irreducible constituents occurring in this branching. If we apply the results 
of Li, Moody, Nicolscu, and Patera [13], we can get all other weight 
vectors of each irreducible constituent canonically from our result. 

We shall realize a representation space of pI @pr in R, 0 R, YZ R = 
Z[X,,~,~]~= 1,2;j,k = i,* ,_,_, ,,. In Section 3, we shall give an action of the reduc- 
tive Lie algebra Z2+ gl(n, h) + gl(n, Z) and its Bore1 subalgebra b on R. 
Using the determinantal method and the Young diagramatical method, we 
construct a relative invariant of b in R as a mean value of the orbit of an 
element of R with respect to the horizontal transformation group of a skew 
diagram. Our main theorem is Theorem 3.13, which states that any relative 
invariants can be described in terms of the relative invariants constructed 
as above. In Section 5, we apply our results in Section 3 to the branching 
of tensor product representations. As a corollary, we have a new proof of 
the Littlewood-Richardson rule (cf. [lo], [ 111, [15]). 

Since our argument is done on E, the integral numbers, our result is a 
characteristic free approach to the Littlewood-Richardson rule and we 
expect some applications of our results to the representation theory of 
Chevalley groups of type A. More systematic characteristic free approaches 
to the representations of general linear grous were given by Akin and 
Buchsbaum using Shur modules and Weyl modules, and particularly they 
gave a characteristic free approach to the Littlewood-Richardson rule in 
[ 1 ] from a different point of view from ours. Also, Boffi studied relative 
invariants of a Bore1 subalgebra of general linear Lie algebras to give a 
universal form of the Littlewood-Richardson rule in [3] in a different way. 

2. COMBINATORIAL NOTATIONS 

2.1. Diagrams 

A partition is a nonincreasing finite sequence of nonnegative integers. Let 
1= (iI, 12, . ..) 2,) be a partition. The summation 11) = XI= i Aj is called the 
size of 1. We usually regard a partition as a sequence of positive integers 
identifying (A,, &, . . . . A,, 0) and (A,, ;I,, . . . . A,). 

Adopting the notation of Macdonald [ 151, we correspond a diagram 
Y(1) to ,4 as seen in the following example. (A diagram is a subset of H x E 
defined on p. 1 in [15].) 
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FIGURE 1 

EXAMPLE. The diagram of the partition A = (4, 2, 1) is Y(n) = Fig. 1. 

We usually denote Y(n) simply by A identifying a Young diagram to its 
corresponding partition. 4 denotes the vacant partition (or its diagram). 
For a diagram A, ‘2 denotes the transposed diagram of I defined by 
(‘n)i= # {j1Aj2,= i}. 

For diagrams 1 and p, we write 2 =) p if lib pi for any i. When 1~ p, the 
set theoretic difference J-p of the diagrams is called a skewdiagram. For 
example, if 2 = (5,4,2, 1) and p = (3,2,2) then I -p is the shaded region 
in the following figure. 

We call p the deficiency of A - ~1. A diagram can be regarded as a skew- 
diagram with deficiency 4. 

2.2. Tableaux 

DEFINITION 2.2. Let A - p be a skewdiagram. A skewtableau T of shape 
1-p is a map from ,J - p into the set of positive integers. Graphically, T 
may be described by numbering each square of the skewdiagram 1 -p. 
T(i, j) is the integer written into (i, j)-place of T in the above descrition, 
which we often write ti,j for abbreviation. A skewtableau whose shape is a 
diagram is called a tableau. If the range of T is involved in ( 1, 2, . . . . n}, T is 
called n-skewtableau. 

FIGURE 2 



4 

EXAMPLE. 

TAKESHITOKUYAMA 

T=3 2 5 

is a tableau of shape (3, 1) such that t,,I = 3, f, z = 2, t,,, = 5 and t,,, = 1. 
A skewtableau is called normal skewtableau if it is a row strictly increas- 

ing array. A skewtableau (resp. tableau) is called standard skewtableau 
(resp. standard tableau) if it is a row strictly and column weakly increasing 
array. 

DEFINITION 2.3. The content of a skewtableau T is the sequence 
(m(T);)is L where m( T)i is the number of occurrence of the positive integer i 
written in T as symbols. 

DEFINITION 2.4. Let ,I be a diagram. The canonical tableau of shape 1 is 
the (standard) tableau Cj. defined by (C,)(i, j) = j for any square (i, j) 
involved in A. 

EXAMPLE. 

C (4.2.2) = 1 2 3 4 
1 2 
1 2 

DEFINITION 2.5 (Bitableau). A bitableau of shape 1 is a pair of tableaux 
of shape A. A bitableau (S, T) is called a standard bitableau if both S and T 
are standard tableaux. 

EXAMPLE. 

is a standard bitableau of shape (4, 3, 1). 

Note. We adopt the notations in [7] here. Our notations for tableaux 
are different from those in [IS]. 
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We consider the Lie algebra 

Let h be the diagonal Cartan subalgebra of gI(n,, Z) and let b2 (resp. 6,) 
be the upper triangular Bore1 subalgebra of gI(n,, Z) (resp. gI(n,, Z)). 
Then g= h + gI(n,, Z) + gI(n,, Z) is a reductive subalgebra of go and 
b= b+ b,+ b, is a Bore1 subalgebra of g. Since gl(n,, Z) acts on Z”l 
naturally, we have a Lie algebra action of go on the tensor space 
z ‘,Q~’ = Z”, @ Znz 0 Z”’ in the usual way. This action induces a represen- 
tation p of the Lie algebra go on the integral coordinate ring R,,,,,,,,, := 
zcx,, ,.k ],=I,2 ,.., rrl:,=l,2 ,.... n>;k=1,2 ,..., ,I, Of zn’“2n’. 

From now on, we assume that n, = 2 and n2 = n3 = n. We denote 
R := Rr,,>,,. The aim of this paper is to find all relative invariants of the Lie 
algebra b with respect to the restricted representation P(,, on R. 

Also from now on, we shall mainly use n-skewtableaux. So we simply 
write skewtableau, tableau, or bitableau instead of writing n-skewtableau, 
n-tableau, or n-bitableau. We shall notice especially if we shall use tableaux 
with some symbols larger than n. 

Notation 3.1. Let i,s and j, be positive integers not larger than n for s 
and t = 1, 2, 3, . . . . p. Then we use the notation (i, , i,, . . . . i, ( j, , jZ, . . . . jr), to 
represent for det(x,,,>, ,,)‘,, = ,,z ,,.., p where E is 1 or 2. 

The following lemma is well known (cf. [7], [IS]) and our key lemma. 

LEMMA S (Straightening law for minors; (Lemma 1, Sect. 8 in [7])), 
Given two minors P=(i,, i, ,..., iSlj,,j2, . . . . j,), and Q= (k,,k,, . . . . k,l I,, I, . 1 ) ,‘., r E 
suchthatI=i,,i, ,..., i,,J=j,,j2 ,..., j.Y,K=k,,kz ,..., k,,andL=l,,l, ,..., 1, 
are increasing sequences. Then for any index b satisfying it, < k,, the following 
formula (*) holds. Suppose that the symmetric group 6,+, of degree r + 1 acts 
on the sequence (m,, m,, . . . . m, + ,) = (i,, i,, . . . . i,, k,, k,, , , . . . . k,) as the 
transformation of indices. 

1 %n(~)(m,,,,, m,,,), . . . . ml(b), ib+ ,, ib+2, . . . . isljl, A, . . ..j.), 
ye%+, 

A, the right side of (*), is an integral linear combination of some suitable 
products P’Q’ such that the size of the minor Q’ is bigger than r and the sum 
of the sizes of the minors Q’ and P’ equals r + s. 
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Let (7’, S) be a (n-)bitableau of shape 1. We correspond the following 
two elements of R to it. 

tTls)c= 1 tti,17 ti,2,...r ti,%,ISi,l,Si,2,“~,SI.I,)E) 

i= 1,2....,h 

where h = (‘,I), is the depth of il, E = 1 or 2, and ti,j (resp. s~,~) are the 
symbols at (i, J’s in T (resp. S). 

The following Theorem is fundamental. 

THEOREM 3.2 (Standard basis (Doubilet-Rota-Stein [ 71)). 

(1) L := {(TIW,l(T, S) are standard bitableaux) is a Z-linear basis 
Of Rt :=ECXe,i,jlz,,=1,2 ,_.., n. 

(2) L:={(TIS),x(T’IS’),I(T,S) and (T’,S’) are standard 
bitableaux} is a Z-linear basis of R. 

We shall call standard polynomials for the elements of L, and L. 

3.3. Let i = (A,, A,, . . . . 1,) be a diagram of size m. The Young subgroup 
6, of the symmetric group 6, of degree m acts on the set of all tableaux of 
shape 1 as the horizontal transformation group as follows. 

Qj. := (li,, x 8,, x . . . x 6,, (direct product). Let (T = (c,, 02, . . . . a,) be an 
element of 8, where rri E 6,,. Then for a tableau T of shape 2, O(T) is the 
tableau given as 

(4T))(i, j) = T(i, a,(j)) for (i, j) E 2. 

For a skewdiagram 1- p, we define the horizontal transformation group 
6 j, _ ~ of II - p similarly. Actually, 6, _ ~ is the subgroup of 6, consisting of 
all horizontal transformations which stabilize the first pi symbols of any ith 
row of any tableau of shape A. 

DEFINITION 3.4. Let p-y be a skewdiagram and let T be a tableau of 
shape 1 such that ,U is a subdiagram of 2. Then the subskewtableau TIP-, 
is the skewtableau of shape ,u - y defined by 

Tl,-,(i, j) = T(i, j) for any (i, j) E p - y. 

Especially, when u is a horizontal transformation of 1, we shall denote 
C(o; PU) for 4CJl, (here Y = 4). 

EXAMPLE. Let 1= (3, 2), p = (2, l), and let 
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Then 

3 1 2 3 1 
w,)=, 1 and C(G;~)=~ . 

DEFINITION 3.5. Let I-p be a skewdiagram and let T be a standard 
skewtableau of shape A - ~1 and content t. We assume that r can be regar- 
ded as a diagram, that is, r I 3 tZ > . . . > 5,. For a tableau S of shape 1, we 
define a tableau T*’ of shape ‘r as follows. We shall keep our eyes upon a 
symbol k. Since T is standard, k can occur at most once in each row of T. 
So T-‘(k), the inverse image of k with respect to the map T, is a vertical 
strip of size r,+. We have a skewtableau SI r-+j of shape T-‘(k). Then the 
kth column of T*’ is defined as the sequence got by reading the symbols in 
sI T-‘(k) from the bottom to the top. 

Especially if 0 E (5 j., we denote T *O for T*“(ci) for abbreviation. 

EXAMPLE. Let 

T= . . 1, 

. 1 2 
1 

which is a standard skewtableau of shape (4,3, 1, 1) - (3, 1) and content 
t = (4, 1). The transposed diagram of r is ‘t = (2, 1, 1, 1). 

o=(k : : :)x(: : :)qx(:> 
is a horizontal transformation of 1. = (4, 3, 1, 1). Then 

T*6=l 3 

4 

DEFINITION 3.6. A pair (T,, T,) of standard skewtableaux is called a 
good pair of type (1, i’; p; t) if it satisfies the following conditions. 

(1) T, and T, have shapes 2 - p and 2’ - p respectively. 
(2) Both T, and T, have content T. 

(3) t is a diagram (i.e., r, 2 rZ z .. . 2 z,). 
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DEFINITION 3.7. Let (T,, T,) be a good pair of type (2, 2’; pi; 5). Then 
we define an element f (T, , T,) of R by 

f(T,, T2) := 1 c sgn(a)sgn(~)(C(a;~)lC(~;~)), x(TF~IT~*~L. 
0 E 6, z E W,,' 

An element f of R is called a relative invariant of the Lie algebra b if 
there exists a linear character x of b such that b . f = p(b) f = of for any 
element b of 6. Since the characters of a Bore1 subalgebra of gl(n, H) are 
parametrized by the set of partitions of length n, a character of b = b + 
b, + b, is parametrized by (p, q; 1; A’) where p and q are integers and J and 
2’ are partitions of length n (recall that lo z Z + H). Here, the length of a 
partition means the length of it regarded as a sequence of nonnegative 
integers. (So the length of it as a sequence of positive integers may be 
shorter.) 

(p, q; R, A’) corresponding to x is called the weight of J It is easily seen 
that p and q are nonnegative integers if (p, q; 2, 3.‘) corresponds to a 
relative invariant in R. 

THEOREM 3.8. Let (T,, T,) be a good pair of type (A, I’; p; T). Then 
f(T,, T,) is a relative inuariunt of b of weight (IpI, Irl; A, A’). 

Proof: Let b = t + n be the Levi decomposition of b. First we show that 
the nilpotent radical n kills f(T,, T,). Since n is the direct sum of the 
nilpotent radicals n, if b, and n3 of b,, it suffices to show that both n, and 
n3 kill f( T,, T,). 

Let Ai=E,,,+] be the n x n fundamental matrix such as its (i, i + 1) com- 
ponent is 1 and the other components are zero. Then {A, 1 i = 1,2, . . . . n - 1) 
generates n2, the Lie algebra consisting of upper triangular matrices of size 
n. We shall show that A;.f(T,, T,)=O for any i= 1,2, . . . . n- 1. Suppose 
;(k > i and let C’ik be the tableau got by replacing a symbol i+ 1 in the kth 
row of C, with an i. We define a polynomial f i-k( T,, T2) by 

f’.k(R,, Td = 1 c sgn@) w(P)(4c>k)l,lW, loI1 (T?a(C2k’I T2*%. 
LEW, PEW,’ 

Since there are two i’s in the kth row of C>k, there exists a horizontal 
transformation of I which stabilizes Cik. So f i’k(T,, T,) = 0. On the 
other hand, because of the definition of f(T,, T,), A’. f( T,, T2) = 
x,,.= ,,2,...,m f i3k(Tl, Tz) where m is the length of the i+ 1 th column of 1. So 
n2 annihilates f ( T1, T2). Similarly n3 annihilates f( T, , T,). The rest to be 
shown is the determination of the weight, which is easily got from the 
action of t on R. 

DEFINITION 3.9 (Word of a tableau). Let T be a skewtableau. The word 
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of T is the sequence w(T) of positive integers derived from T by reading the 
symbols in T from bottom to top in successive columns, starting with the 
first column. 

A word w=a,, a,, . . . . a, is said to be a lattice permutation (or 
Yamanouchi word) if for any positive integer p and i such that p < r, the 
number of occurrence of the symbol i in the subsequence a,, a,, . . . . ap is not 
less than that of the symbol i+ 1 in the same subsequence. 

We shall say that a skewtableau T has L-R property if w(T) is a lattice 
permutation. 

For a word u’= a,, a,, . . . . a,, the dual word IV+ = h,, h,, . . . . h, is defined 
such that h, is the number of occurrence of the symbol ai in the sub- 
sequence a,, a,, . . . . a, of 1~. A word is a lattice permutation if and only if 
(w’)’ = M’. 

DEFINITION 3.10. The dual tableau Tf of a skewtableau T is the 
tableau of same shape as T such that w( T+) = w(T)+. 

EXAMPLE. If 

T= 1 2 3 4, 
1 2 3 

then 

T+ = 3 2 2 1. 
2 1 1 

Remark. T+ may not be an n-tableau. 

Let T be a standard skewtableau of shape ,? -p. Then we define 
N(T) = # (stab,, T+ ) = # (stab,,./,, T+ ) # ((si,), where stab, T+ means the 
stabilizer of T+ in G and # (G) means the order of G. 

LEMMA 3.11. Let (T, , T,) be a good pair. Then f( T, , T,) is divisible by 
N(T,).N(T,) in R. 

ProoJ Suppose that (T,, T,) is of type (A, I’; p, t). Let g be an element 
of stab,; T+ and c1 and /3 be elements of 6,. Since 0 = (or x c2 where gL 
and (TV belong to 6, and (jjj./ll respectively, (C(a .cc; p) 1 C(fi; p)), = 
sgn(ai)(C(a;p)lC(/?;p)),. Further, we claim that (T:“‘“l T:P)z=sgn(a,) 
(T:‘) TT8)*. To prove this claim we recall the definition of T:“. The kth 
column of T:’ consists of the sequence written in c~(C,)j.~l,,,. So we find 



10 TAKESHI TOKUYAMA 

that the kth row of T:” consists of the sequence written in a(C,)J(,:)-I(,) 
read from left to right. Since u .cc(C,)[(,,+-I~,, and LX(C~)((~~,+-+) are the 
sequences which have the same members and the difference of the orderings 
of them corresponds to the permutation c2, the claim follows. Similar 
results holds for the stabilizer of Tj+. 

So from the definition of f(T,, T2), f(T,, T,) is divisible by 
NT,) NT,). 

DEFINITION 3.12. F(T,, T,) :=f(T,, T2)/N(Tl) N(T,) is called the L-R 
polynomial corresponding to the good pair (T,, T2). 

THEOREM 3.13 (Main theorem). The set of all L-R polynomials of type 
(,I, A’; p, z) such that 1~1 = m, and IzI = m2 is a Z-linear basis of the relative 
invariants of b in R of weight ((m,, m,), A, A’). 

4. PROOF OF THE MAIN THEOREM 

DEFINITION 4.1 (Transposed lexicographical order). Let 1 and p be 
dilagrams. We define a lexicographical order > such that ;1> ,n means one 
of the following two conditions. 

(a) l;il > 1~1. (b) 111 = I,u/ and there exists an index i such that 
(‘A),= (‘P)~ for any j< i and (‘l)i> (‘P)~. 

If T is a standard tableau of shape A and i<n, the inverse image of 
{ 1, 2, . . . . i} with respect to the map T is a subdiagram of 1. We denote this 
subdiagram by T(i). 

DEFINITION 4.2. Let T and S be standard tableaux of shape A and p 
respectively. T > S means that one of the following two conditions holds. 

(a) II > ,u. (b) I = p and there exists a symbol i such that T(j) = S(j) 
for any j<iand T(i)=S(i). 

Among standard bitableaux, we define a total order > such that 
(T,, T2)> (S,, S,) means (a) T1 > T2, or (b) T, = T2 and S, > S,. 

By means of above ordering, we define a total order among the standard 
polynomials naturally. That is, ( T1 I S,), x ( T2 I S,)z > (T; ( S;), x (T; I S;), 
means (a) (T,, S,)> (Ti, S,‘) or @I (T,, S,)=(C’, S;) and (T2, W> 
(T;, S;). 

We prepare another (partial) order among the tableaux of a same fixed 
shape and of a same fixed content. 

Notation 4.3. The sum of the number of occurrences of the symbol 
smaller than i in the rows from the top row to the rth row of a tableau T is 
denoted by # T(;). 
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DEFINITION 4.4. Let T and S be tableaux of a same shape. We denote 
T X! S if T and S have a same content and # T(j) < # S(:) for any i and r. 

T-Smeans TZSandSZT. 

Remark. If T and S are standard tableaux and T ;;! S, then T> S. 

Now we shall show the linear independence of the L-R polynomials. Let 
F( T, S) be an L-R polynomial of type (2, il’; ,u; 7). Suppose we write 
F( T, S) as a Z-linear combination of standard polynomials. 

Claim 4.5. The highest nonzero term of above linear combination is 
(C,l C,), x (T*’ I s*‘)z> where 1 is the identity horizontal transformation. 
Further, its coefficient is 1. 

LEMMA A. Let (T, S) be a bitableau of shape A.. When we write (TI S), 
in a linear combination of standard polynomials of R,, any nonzero term 
(TO 1 S,), satisfies one of the following conditions (a) or (b). 

(a) The shape of T,, is lower than I with respect to the order >. 

(b) The shape of TO is 1, and both T 2 TO and S 2 S,. 

This lemma is a direct consequence of the straightening law (Lemma S 
in Sect. 3, see also Lemma 1.5 in [6]). A similar statement holds for 
(Tls),. 

Applying Lemma A to each term occurring in Definition 3.7 of L-R 
polynomials, it suflices to check the following (l), (2), and (3) to show 
Claim 4.5. 

(1) For any a~@~., C(l;p) 2 C(cr;p). 
(2) If C( 1; p) N C(cr; p), then T*’ 2 T*a. 

(3) C(l;~)~C(a;~) and T*’ w T*’ if and only if GI stabilizes T*. 

It is a routine work to check (l), (2), and (3). 
Claim 4.5 assures us that the highest terms of two arbitrary different L-R 

polynomials cannot coincide. So the linear independence of the L-R 
polynomials follows from the linear independence of the standard 
polynomials in R. 

It remains to be shown that an arbitrary relative invariant of b can be 
written as a Z-linear combination of L-R polynomials. We shall show that 
the top term of any relative invariant must satisfy a typical condition. First, 
we prepare some facts about standard polynomials. 

Let T be a standard tableau of shape i and let p be a symbol of T. Sup- 
pose that we replace some p’s from T by the same number of p - l’s to 
make a new tableau T,,. Then one of the following three cases occurs since 
there is at most one p in each row of T. 
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Case 1. T, is a standard tableau. 

Case 2. There exists a suitable row of T, such that there are two 
p - l’s in it. 

Case 3. T, is a normal tableau but not a standard tableau. 

Let S be a standard tableau of shape i. In Case 2, (T, 1 S), = (T, 1 S), = 0. 
The third case is most complicated. We define the operation 
R(p, k --* k - 1) on the set of tableau as follows. If there exist columns j of 
T such that T(k,j)=p and T(k-l,j)=p+l, R(p,k+k-l)T is the 
tableau got by exchanging those p and p + 1 for all such columns. 
Otherwise, R(p, k + k - 1) T= T. 

We apply this operation to Case 3 as follows. 

LEMMA. Let T and T,, be as above in Case 3. Let m = (‘II), . Then 
R(p-l,m+m-1) R(p-1,m-1-+m-2)~~~R(p-1,2+1)T,, is a 
standard tableau. We denote T, for this standard tableau. 

Proof of this lemma is easy since T is standard. 

EXAMPLE. Let 

T=l 2 4 6 and p=4. 

1 2 4 
2 4 

When we replace the symbol 4 in the second row of T by 3, the resulting 
tableau 

T,=l 2 4 6 
1 2 3 
2 4 

is a normal but not standard tableau, and 

T,,= 1 2 3 6. 
1 2 4 
2 4 

DEFINITION 4.6. L,(A) is the Z-submodule of R, spanned by all 
standard polynomials having lower shapes than A with respect to >. 

PROPOSITION 4.7. In Case 3, using the notation above, (T, I S), = 
( T, / S), + h for a suitable element h of L,(A). 
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Proof: Using the straightening law for the k - 1 th row and kth row of 
R(p-l,k-l-+k-2)...R(p--1,2+1)T,, wehave 

(R(p-l,k+k-l)R(p-l,k-l+k-2)~~~R(p-1,2+1)TO~S) 

=(R(p-l,k-l-k-2)R(p-l,k-2+k-3)... 

xR(p-1,2+1)T,(S),+h, 

where h, is an element of L,(A). Proposition 4.7 follows inductively because 
h=h,+h2+ ... +h,,EL,(d). 

Now let f be a relative invariant of b. We write 

,f= c d(T,T’;S,S’)(TJS),x(T’IS’),... (*I 
T, T , s. S’ 

as a Z-linear combination of standard polynomials. 
Suppose that (T,, 1 SO)r x (A ) B)* is the highest nonzero term appearing in 

(*). Since f is b-relative invariant, we see that T, = S, = C,, a canonical 
tableau of a suitable type, from the argument in [4]. Here we must deter- 
mine A and E. Let z be the shape of A. We collect the terms (C, 1 C,), x 
(T( S), in (*) such that the shape of T is z. We define 

g := c d(C,, C,; T, WTI S),, 
T,S:(u) 

where the summation runs over bitableaux (T, S) satisfying the con- 
dition (a) : the shape of T is r. Then .f = (C,, ( C,), x g + lower terms. 

CLAIM 1. Let k=(‘p),-(‘p)i+,. Then (A,)k+l.g=O (see theproof of 
Theorem 3.8 for the definition of A,). 

Proof: For abbreviation, we shall write h”’ for (Ai)’ h for an element h 
of R. The ith column of the canonical tableau C, consists only of the sym- 
bol i, which occurs (‘P)~ times. Let Ci be the tableau got by exchanging the 
p pieces of i’s with the same numbers of i+ l’s in the ith column of C, 
from the bottom. Remark that Cz is a standard tableau if and only if p is 
smaller than or equal to k. We can prove the following lemma from the 
straightening law, Proposition 4.7, and Lemma A in 4.5. 

LEMMA B. Let p < k - 1. Then (Cz I CI1)\‘) = p( Cz” I C,) I + lower terms 
and there exists no other standard tableau T such that (Cr+’ ( C,), occurs as 
a nonzero term in (TI C,)(,‘). 

Considering the coefficient of (Cc 1 C,), in f(l), Claim 1 is induced from 
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Lemma B. Further, it is simultaneously shown that the coefficient of 
(C,” 1 C,), in f is l/p! x gcp). 

Now (A 1 I#)2 is the highest term in g. Then we define go= g,,, by 
go :=CT-‘(,,=A-‘(,) d(C,? C,; T, B)(TIB),..’ (4.7.1) where I= (1, 2, . . . . n} 
- {i, i + 1) and the summation runs over all standard tableaux T satisfying 
T- ‘(I) = A - ‘(I). 

CLAIM 2. go (k + ‘) is a linear combination of standard polynomials (TI S) 
either such that the shape of T is lower than z or such that T-‘(Z) # A-‘(Z). 

Proof. Because of the maximality of A, this claim follows from 
Lemma A in 4.5 and Claim 1. 

We prepare a combinatorial lemma to complete the proof of 
theorem 3.13. 

DEFINITION 4.8. Let Q be a sequence of two kinds of integers 1 and 2. 
For a nonnegative integer k, we say Q is a k-lattice permutation if 2 occurs 
in Q less than k times, or if the sequence Q’ made from Q subtracted the 
first k pieces of 2 is a lattice permutation. 

LetK=(k,,k, ,..., k,-, ) be a sequence of nonnegative integers. Let T be 
a standard tableau. We say that T satisfies the K-lattice permutation 
property if the subsequence of w(T) consisting of all i’s and i + l’s in w(T) 
is a k,-lattice permutation regarding i and i + 1 as 1 and 2 respectively. 
(Note : (0, 0, . . . . 0)-lattice permutation is the lattice permutation defined 
in 3.9.) 

CLAIM 3. Let ki = (‘p); - (‘P)~+, . Then both tableaux A and B occurring 
in the highest term (A 1 B), of g satisfy the K-lattice permutation property. 

Let us prove the theorem assuming Claim 3. We construct an L-R 
bitableau (TA, TB) of type (,I, 1’; p; r) where r is the shape of A and 1 
(resp. ,I’) is determined by (‘l)i= (‘P)~+ (v~)~ (resp. (rA’)i= (‘P)~+ (v~)~). 
Here, vA and vs are contents of A and B respectively, and the K-lattice 
permutation property assures that (‘P)~ + (v,)~ is nonincreasing with 
respect to i. 

Suppose that the symbol p is located in the i,, i,, . . . . i,th rows of A, 
where m = (v~)~. Then we write the sequence i,, iz, . . . . i, in the pth column 
of the skew diagram ,I - p column (strict) increasingly. After we do such 
operation starting from p = 1 to p = n, we get the tableau TA. Since A 
satisfies the K-lattice permutation property, it follows that TA is a standard 
tableau. Since A is a standard tableau, it follows that T, has the L-R 
property. TB is constructed similarly. 

Now we have an L-R bitableau ( TA, TB). Recall that the L-R 
polynomial F( T,, T,) has the highest term (C, 1 C,), x (A 1 B)* (Claim 4.5). 
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Since both f and F( TA, TB) are b-relative invariants of a same weight, 
f - mF( T, , TB) is also a b-relative invariant for any constant m. Since the 
coefficient of the highest term in F(T,, T,) is 1, we can choose an integer 
m such that the coefficient of (C, 1 C,), x (A 1 B)* in h = f - mF( TA, T,) is 
zero. Then h is a relative invariant of b such that its highest term is lower 
than that of 1: So the theorem is proved by induction on the height of the 
highest terms with respect to the total order > among the standard 
polynomials. 

The rest to be shown is the proof of Claim 3. 
Let X= 1, 1, . . . . 1, 2, 2, . . . . 2, . . . . n, . . . . n be a nondecreasing sequence of 

positive integers. The number of occurrence of i in X is denoted by m*(i). 
We associate an indeterminant xL for any subsequence L of X. For a 
natural number p, X(p) denotes the set of all subsequences of length p of 
X. Let q be a natural number smaller then p. Let us consider an arbitrary 
map Q from X(p) into the set of real numbers. For any element A4 of X(p), 
we define a polynomial F,,,(M) :=& C(L, M) Q(M) xL, where the 
summation runs over all subsequence L of A4 of length p - q. C(L, M) 
denotes the repeated combination number to choose L out of M, i.e., 

C(L, M) = fi m,(i) 
( > ,=] mAi) 

(product of combination numbers). 

LEMMA C. Suppose C,,,MEx(P, F,,*(M) =0 for a nonzero map Q. Then 
there exists an element M in X(p) satisfying the following two conditions. 

(a) Q(M) # 0. 

(b) Let us denote the subsequence of M consisting of its last p-q 
elements by &?. Let X - M be the sequence made excluding the subsequence 
M from X. Then X - M > M, where > means both that the ith element of 
X - M is smaller than the i th element of i@ for any i and that the length of 
X- M is not shorter than that of I@. 

This lemma is an analogue of Lemma B, p. 362 in [16] and we can 
prove it similarly. 

To apply this lemma to our problem, let T be a standard tableau and i 
be a symbol of T. If there exist both symbols i and i + 1 in some row of T, 
we omit those rows. Then we get a standard tableau T’ in which there 
exists no row containing both i and i + 1. Suppose that i and i + 1 occur kj 
and k; times in the rth column of T’ respectively. We define a sequence 
X(T) and subsequence M(T) by m,(r)(r) = kj + kz and m,(,)(r) = kz. Let 
us recall the definition of g,. In the summation of the right hand of 4.7.1, 
we collected the tableau T such that T- ‘(I) = A ~ ‘(I). It is easily seen that 

481/117il-2 
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X( 7’) =X(A) for any T satisfying T-‘(I) = A -‘(I). We set X=X(A), p is 
the length of M(A), q=p-k- 1, and 

Q(M( T)) := 4C,, C,; T, B) if T-‘(Z)=A-‘(I) 
o 

otherwise. 

Then we have CT F,,,(M( T)) = 0 from Claim 2 and Proposition 4.7. Then 
Lemma C indicates that the subsequence of w(A) consisting of all i’s and 
i+ l’s in w(A) is a k,-lattice permutation. Now we conclude that A satisfies 
the K-lattice permutation property. Similarly, B satisfies the K-lattice 
permutation property too. Q.E.D. 

5. LITTLEWOOD-RICHARDSON RULE 

Let I be a partition such that I, is not longer than n. Then we can 
correspond an irreducible representation pi, of gI(n, C) to II such that the 
highest weight of pi. is ‘,I. The @-linear span of the standard polynomials 
(TI C,), for all standard tableaux T is a representation space of pr with 
respect to the action of the subalgebra g,, :=0+ gf(n, @)+Oc 
hc + gl(n, C) + gl(n, C) = gc, where gc and hc are the complexitication of g 
and h respectively (cf. [7]). 

We denote V, for this representation space. 
Now we shall study the branching of the tensor product representation 

space Vi.@ V, of gl(n, C) embedded into the complexification of R. 

Note. In many texts (e.g., [IS]) they use a transposed diagram version 
of our notation to parametrize irreducible representations of gl(n, C). 

A representation space of pi, 0 pp is constructed in R,, the com- 
plexification of R. Indeed, the @-linear span Vj,,p of the set of standard 
polynomials { (TI Cj.), x (S 1 C,,)* ( T and S are standard tableaux of shape 1 
and /J respectively} is a representation space of pj.0~~. From the general 
theory on the representations of complex reductive Lie algebra (cf. [9]), 
this representation is completely reducible and the maximal weight vectors 
(i.e., relative invariants of a Bore1 subalgebra of go) of weight ‘v in this 
representation space become the highest weight vectors of the irreducible 
constituents pV of pj,@pq. Let us study the space of maximal weight 
vectors of weight v with respect to the Bore1 subalgebra 0+ b, + 0 of 
g,=O+gl(n, @)+O. Since all vectors in Vj.,~ are h+O+ b, relative 
invariant, it suffices to find all relative invariants of b in Vi.,cl. From the 
result of Section 4, a relative b-invariant in VI,, is a linear combination of 
L-R polynomials F(A, T) such that A has deficiency 2 and content ‘p, and 
T is a particular skewtableau of shape T - II defined by T(i, j) = j for 
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(i, j) E t - A, where t is the partition defined by ( ‘7)i = ( ‘A)i + ( ‘P)~ for any i. 
The reason why T is such a tableau is the Claim 4.5. Conversely, from the 
definition of F(A, T), such linear combination is of weight v with respect to 
b, if and only if all A’s appearing in it have shape v -A. Then we have the 
following corollaries. 

COROLLARY 5.1. In the notations above, the space of the highest weight 
vectors corresponding to the irreducible constituent p, in V,,. z V,@ V, has 
a canonical basis 

{ F(A, T) I L-R polynomials of type (v, 7; 1.; ‘p) such that T is the 
fixed skewtableau defined above}. 

COROLLARY 5.2 (Littlewood-Richardson rule). Let pj. and p,, be 
irreducible representations of gl(n, 62). Then the multiplicity of p, in the 
tensor product representation pi, 0 pP equals the number of skewtableaux of 
shape v-i and the content ‘p satisfying L-R property. 
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