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Algorithms for Finding Attribute Value
Group for Binary Segmentation

of Categorical Databases
Yasuhiko Morimoto, Member, IEEE Computer Society,

Takeshi Fukuda, Member, IEEE Computer Society, and Takeshi Tokuyama

Abstract—We consider the problem of finding a set of attribute values that give a high quality binary segmentation of a database. The

quality of a segmentation is defined by an objective function suitable for the user’s objective, such as “mean squared error,” “mutual

information,” or “�2,” each of which is defined in terms of the distribution of a given target attribute. Our goal is to find value groups on a

given conditional domain that split databases into two segments, optimizing the value of an objective function. Though the problem is

intractable for general objective functions, there are feasible algorithms for finding high quality binary segmentations when the

objective function is convex, and we prove that the typical criteria mentioned above are all convex. We propose two practical

algorithms, based on computational geometry techniques, which find a much better value group than conventional heuristics.

Index Terms—Value groups, binary segmentation, categorical test, decision tree, data reduction, data mining.

æ

1 INTRODUCTION

WE consider the problem of finding a set of attribute
values that give a high quality binary segmentation of

a database. The quality of a segmentation is defined by an
objective function suitable for the user’s objective, such as
“mean squared error,” “mutual information,” and “�2,”
each of which is defined in terms of the distribution of a
given target attribute. Our goal is to find value groups on a
given conditional domain that split databases into two
segments, optimizing the value of an objective function.

1.1 Value Group for Binary Segmentation

Assume that there is a database relation that contains
categorical and numerical attributes, and let R be a
projected relation from the database. We assume that the
attributes in R are all categorical, that is, unordered and
discrete. We treat one attribute of the relation as special and
call it a target attribute. Other attributes of the relation are
called conditional attributes.

Let A be the target attribute, domðAÞ ¼ fa1; a2; � � � ; akg be
the domain of A, and k be the target domain size, that is, the
number of distinct values. Let xiðSÞ denote the number of
records in S � R for which the value of the target attribute
A is ai (1 � i � k).

Let C1; C2; � � � ; CM be the conditional attributes. We treat
these attributes as a single attribute C whose domain is the
Cartesian product of their domains, that is,

domðCÞ ¼ domðC1Þ � domðC2Þ � � � � � domðCMÞ:

If Ci, where i ¼ 1; 2; � � � ;M has ni distinct values, the
conditional domain size of C is n ¼

Q
i ni for 1 � i �M.

To make a binary segmentation of R, we use a set of
attribute values, which we call a value group, on the
conditional attribute C. Let V � domðCÞ be a value group
that divides the database relation R into two segments
S ¼ ft 2 R j t½C� 2 V g and S ¼ ft 2 R j t½C� =2 V g, where t
denotes a record in R and t½C� denotes a value of t for
attribute C. We say “V splits R into ðS; �SSÞ.” Our ideal
goal is to find, among all possible value groups, a value
group V that maximizes (or minimizes) an objective
function fðS;SÞ ¼ fðx1ðSÞ; � � � ; xkðSÞÞ ¼ fðxðSÞÞ.

Note that we do not have to treat all conditional
categorical attributes as a single attribute. In many applica-
tions, it is better to treat each attribute separately. In such
cases, there is a binary segmentation problem for each
attribute.

1.2 Motivating Example

Table 1 shows an example of a relation projected from the
sales log of a car rental company. In the relation, “Color”
and “Size” show the characteristics of each car rented, and
“Age” shows the customer’s age. Assume that there are five
colors (“white,” “black,” “red,” “blue,” and “silver”) and
three sizes (“compact,” “medium,” and “large”) in the
relation.

Assume that the company wants to classify customers
according to the value of “Age” by using the characteristics
of cars. We use “Age” as a target attribute and the other
attributes as conditional attributes. If we treat the two
conditional attributes as a single attribute, a value group is a
set of values like “Color=white and Size=compact” or
“Color=red and Size=compact.” Finding a high quality
value group on the conditional domain gives us clues to
understanding what characteristics attracted young, mid-
dle-aged, or old customers.
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In general, such value groups are used as part of decision
systems such as “splitting tests” for decision trees [4], [22].
Decision trees are easy to compute, and their knowledge
representation is easy to comprehend. Moreover, their
prediction accuracy is as good as that of other accurate
decision systems. Therefore, techniques for fast construc-
tion of decision trees from large data sets have been studied
intensively in the database community [16], [25], [24], [13].
In recent years, decision trees have often been used as parts
of boosting or bagging methods [7], [3], [23], which are
known to be among the most accurate prediction methods.
A decision tree has two important tasks, class prediction
and modeling. Especially for modeling tasks, high quality
value groups are significant.

In addition to decision trees, high quality value groups
can be applied for some kinds of optimization problems.
Moreover, if we apply data segmentations by applying high
quality value groups recursively, we can make a value
group hierarchy. Such a hierarchy can be used to simplify
the conditional domain. We can assign a general value for a
value group of each leaf node of the hierarchy. By applying
data reduction or value reduction techniques [20], we can
reduce the conditional values in a database without losing
essential information. Therefore, high quality value groups
on conditional domains provide us with essential informa-
tion for the analysis of databases.

If there are five colors and three sizes, there are at most
15 ¼ 5� 3 values in the conditional domain of the relation.
Therefore, we have to examine at most 215ÿ1 possible value
groups in this small example to find the optimal one. In
general, if the conditional domain size is n, there are 2nÿ1 ÿ 1
possible value groups. Hence, a naive exhaustive search for
the optimal binary segmentation requires Oð2nÞ time, which
is not practical. Therefore, we need feasible heuristics that can
find high quality value groups approximating the optimal
one with respect to the quality of the binary segmentation.

1.3 Main Results

In this paper, we propose two algorithms, named the
Random Enumeration Algorithm and the Probing Algo-
rithm, that we designed by using computational geometry
techniques. Both of the algorithms can feasibly compute a
high quality value group for cases in which k is a small
constant. The domain size n is allowed to be very large.

Each possible value group on a conditional domain can be
interpreted as a point in a k-dimensional space, and we can
translate the problem of finding the optimal value group into
that of finding a point in the k-dimensional space. We proved

that the optimal point must be on the convex hull of the point
set of all possible value groups. Both of the algorithms
compute a point on the convex hull efficiently, that is, inOðnÞ
time, without examining points inside the hull.

The Random Enumeration Algorithm examines points
on the convex hull by using random sampling. It outputs
the best point of the examined points, which are computed
from a small sample. The time complexity is reduced to
Oðskÿ2nÞ, where sð� nÞ is the sample size. We will
empirically show that the Random Enumeration Algorithm
finds a satisfactory value group with a small sample. This
algorithm can run with a small working space and can
easily be parallelized.

The Probing Algorithm uses tangential hyperplanes to
compute points on the convex hull. If we maintain a list of
points that are examined during the search and incremen-
tally construct inscribed and circumscribed convex poly-
gons inside and outside the hull, we can find clues as to the
next point to be examined [8], [17], [18]. However, the total
cost of the incremental convex polygon maintenance and
probing of the convex hull is OððnþmÞjP jÞ, if we have m
points and jP j facets on the convex hull. The m and P can
be asymptotically as large as nkÿ1 and mb

k
2c, respectively, in

a pathological input. Though they are known to be much
smaller in a normal input, the incremental polygon
maintenance is still costly when k becomes large.

The Probing Algorithm maintains only promising facets
of the inscribed convex polygon, using some heuristics, and
works within a limited working space. It can find a
satisfactory value group in an earlier step of the algorithm.
At every incremental step of the algorithm, it can report the
best solution found so far and, thus, the solution gradually
converges to the optimal. In cases where a quick response is
required, the Probing Algorithm can return the best value
group found in the required time, and it is thus suitable for
online applications.

2 VALUE GROUP

2.1 Stamp Point

Let V � domðCÞ be a value group that divides the database
relation R into two segments S ¼ ft 2 R j t½C� 2 V g and
S ¼ ft 2 R j t½C� =2 V g. The value group V can be evaluated
by an objective function.

For a segment S, let xiðSÞ be the number of data records
in S for which the value of the target attribute is ai. Thus,
each segment S of the relation R can be mapped to a point
xðSÞ ¼ ðx1ðSÞ; x2ðSÞ; � � � ; xkðSÞÞ in the k-dimensional Eucli-
dean space, which is referred to as a stamp point of S. A
stamp point represents the distribution of the target
attribute of interest, and our objective functions of binary
segmentations, fðS; �SSÞ, are defined in terms of xðSÞ or xð �SSÞ.
If a value group V splits R into ðS; �SSÞ, we also refer to the
stamp point of S as the stamp point of V (i.e., xðV Þ ¼ xðSÞ).

2.2 Criteria for Segmentation

The significance of the discovered rules depends on the
user’s objective and, hence, there is no universal criterion
for measuring the significance of value groups. A useful
segmentation should divide data into segments whose
target distribution is more skewed than that of the data as a
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whole. Therefore, we often use criteria such as the “mean
squared error,” “mutual information,” “�2,” and so forth,
which indicate the extent to which the divided data
distributions are skewed and differ from the original data
distribution.

In this section, we describe objective criteria and their
corresponding functions commonly used for evaluating
data segmentations.

2.2.1 Mean Squared Error

The implication of the “gini” criterion [4] is “how much the
mean squared error of the target values is decreased by the
segmentation.” The optimal segmentation according to this
criterion minimizes the mean squared error. The error is the
sum of the number of misclassified records in each segment,
that is, the number of records that are not the same as the
majority value in each segment. Let jSj ¼

Pk
i¼1 xiðSÞ and

piðSÞ ¼ xiðSÞ=jSj. The gini criterion is defined as follows:

GiniðxðSÞÞ ¼ GiniðS; �SSÞ

¼ 1ÿ
Xk
i¼1

piðRÞ2
 !

ÿ jSjjRj 1ÿ
Xk
i¼1

piðSÞ2
 !

ÿ j
�SSj
jRj 1ÿ

Xk
i¼1

piðSÞ2
 !

:

2.2.2 Mutual Information

The following entropy gain function compares the mutual
information gained by a segmentation. It indicates “how
much information is given by the segmentation.”

EntðxðSÞÞ ¼ EntðS; �SSÞ

¼ ÿ
Xk
i¼1

piðRÞ log piðRÞ

þ jSjjRj
Xk
i¼1

piðSÞ log piðSÞ þ
j �SSj
jRj
Xk
i¼1

piðSÞ log piðSÞ:

2.2.3 �2 (Correlation)

The following �2 function indicates how strongly the
statistical hypothesis that “S and S are not different from
R” is denied.

ChiðxðSÞÞ ¼ ChiðS; �SSÞ

¼
Xk
i¼1

jSjðpiðSÞ ÿ piðRÞÞ2 þ j �SSjðpið �SSÞ ÿ piðRÞÞ2

piðRÞ
:

Example 2.1. To illustrate the quality of value groups, we
consider binary segmentations of the following data. In
these data, a target attribute has three values, say a1, a2,
and a3, and each value has 40, 30, and 30 records,
respectively.

Let us consider a binary segmentation that divides R into
S and �SS as follows:

The stamp point for the segmentation is ð40; 10; 10Þ in
three-dimensional space. The gini index value, for example,
is computed as

1ÿ 40

100

� �2

ÿ 30

100

� �2

ÿ 30

100

� �2
 !

ÿ 60

100
1ÿ 40

60

� �2

ÿ 10

60

� �2

ÿ 10

60

� �2
 !

ÿ 40

100
1ÿ 0

60

� �2

ÿ 20

60

� �2

ÿ 20

60

� �2
 !

¼ 0:16:

Let us consider another segmentation:

In this case, the value of the gini function of the stamp

point ð20; 20; 20Þ is only 0:01, much smaller than the value of

the former segmentation. Notice that mean squared error in

this segmentation is larger than that of the former

segmentation.

The quality of a value group for a binary segmentation

with respect to the gini index can be evaluated by the

value of GiniðxðSÞÞ ¼ GiniðS; �SSÞ if the value group splits

data into two segments, say “S” and “ �SS.” The higher the

value of the objective function is, the better the quality of

the value group is with respect to this criterion. Similarly,

we prefer higher values of EntðxðSÞÞ ¼ EntðS; �SSÞ and

ChiðxðSÞÞ ¼ ChiðS; �SSÞ.

2.3 Convexity of the Objective Functions

If we consider objective functions that are defined in terms

of a stamp point in k-dimensional Euclidean space, the

following property can be used in searching for the optimal

(or a high quality) point and its corresponding value group:

Definition 2.1 (Convexity). fðxÞ is convex if

maxffðx1Þ; fðx2Þg � fðð1ÿ Þx1 þ x2Þ

for 0 �  � 1 and arbitrary points x1 and x2 in the domain of f .

Lemma 2.1. The gini index, entropy gain, and �2 are all convex

functions on x.

Proof. For any vector � 6¼ 0, the second derivative of the
functions along with � is nonnegative.

Let r ¼ ðr1; � � � ; rkÞ be the set of all records to be split,

and letkrk ¼
Pk

i¼1 ri, i.e., jRjand letkxk ¼
Pk

i¼1 xi, i.e., jSj.
Let us first prove inequality for GiniðxðSÞÞ. It is

transformed as follows:

GiniðxðSÞÞ ¼ Constantþ 1

jRjGðxðSÞÞ

þ 1

jRjGðxðRÞ ÿ xðSÞÞ;

where
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GðxðSÞÞ ¼ GðxÞ ¼
Xk
i¼1

x2
i

kxk :

Let � ¼ ð�1; �2; � � � ; �kÞ and Y ¼ ð�;xÞ ¼
Pk

i¼1 �ixi.
The first derivative of GðxÞ is

G0ðxÞ ¼ dGðxÞ
dY

¼
Xk
i¼1

1

�i

@GðxÞ
@xi

¼ 1

kxk
Xk
i¼1

2xi
�i
ÿ ktk
kxk2

Xk
i¼1

x2
i ;

where t ¼ ð�ÿ1
1 ; � � � ; �ÿ1

k Þ, and the second derivative is

G00ðxÞ ¼ 2

kxk
Xk
i¼1

ktkxi
kxk ÿ

1

�i

� �2

� 0:

Therefore, Gini00ðxðSÞÞ � 0.
We proved the convexity of EntðxÞ in [17]. We now

show it for ChiðxðSÞÞ. The function is transformed as
follows:

ChiðxðSÞÞ ¼ CðxðSÞÞ þ CðxðRÞ ÿ xðSÞÞ;

where

CðxðSÞÞ ¼ CðxÞ ¼
Xk
i¼1

xi ÿ ri kxkkrk
� �2

ri
kxk
krk

:

The first derivative of CðxÞ is

C0ðxÞ ¼ dCðxÞ
dY

¼
Xk
i¼1

1

�i

@CðxÞ
@xi

¼ krkkxk
Xk
i¼1

2xi
�iri
ÿ ktkkrk
kxk2

Xk
i¼1

x2
i

ri
ÿ ktk;

and the second derivative is

C00ðxÞ ¼ d
2CðxÞ
dY 2

¼ 2krk
kxk

Xk
i¼1

1

ri

1

�i
ÿ xi

ktk
kxk

� �2

� 0:

Therefore, Chi00ðxðSÞÞ � 0. tu

Thanks to this property, the optimal point that gives the

maximum value of an objective criterion must be a vertex of

the convex hull of all stamp points in the k-dimensional

space. The problem now becomes how to find the optimal

vertex of the convex hull efficiently.

2.4 Related Work

For the case in which the target domain size is two, i.e.,

k ¼ 2, we can order the n values so that the optimal value

group is one “cut” of the ordered sequence, if we can

assume convexity of the objective criterion [4], and all of the

mentioned criteria do have this property. Consequently, we

have an Oðn lognÞ algorithm. However, this algorithm is
not applicable to cases in which the target domain size is
greater than two.

For categorical databases, in which the conditional
domain size is large and k > 2, there is no practical existing
algorithm that can find the optimal value group. Despite the
difficulty, however, there are some heuristics for handling
the problem [4], [19], [5], [22] that are used in practice for
constructing decision trees.

A heuristic, called “two-ing” [4], divides the target
domain into two classes, called superclasses, and applies
the Oðn lognÞ algorithm for k ¼ 2 to create the optimal
subdivision for each of the 2kÿ1 possible divisions into
superclasses, and finds the best one among them. This
runs in Oð2kÿ1n lognÞ time, which is efficient for a small
constant k.

Another heuristic [22] greedily merges two conditional
values from the conditional domain to reduce the condi-
tional domain size to nÿ 1, so that the objective function is
maximized. It repeats this greedy merging process until
n ¼ 2 and then returns the final two groups. This Oðn3Þ
heuristic can be used even if k is large.

The above heuristics are known to be practical for
constructing decision trees. However, neither of them has a
guarantee on the optimality of the result.

In [8], [17], [18], we used guided branch-and-bound
searching to find the optimal two-dimensional numeric
association rule that optimizes entropy. The proposed
algorithm efficiently finds the optimal vertex of the convex
hull of all possible points. However, k may become larger,
so that k > 4 when we consider the problem for very large
databases such as DNA databases and the rental log
example. The space limitation does not permit the use of
the algorithm on ordinary workstations; therefore, we
present feasible algorithms for finding high quality value
groups for the very large categorical databases which
present such a challenging problem.

3 ALGORITHMS

3.1 Preparation

When changing the value group V , we will frequently
compute stamp points xðV Þ, i.e., xðSÞ. If we scan the
database R to find each stamp point, it will always take
OðjRjÞ time. To speed up this process, we preprocess the
relation as follows.

Among all possible value groups, we call value groups
that consist of only one element atomic value groups and
denote each such group Vatom. We can construct an arbitrary
value group for the categorical conditional attribute by
making a union of atomic value groups.

We compute a stamp point xðVatomÞ ¼ ðx1; x2; � � � ; xkÞ for
each atomic value group beforehand. To find the stamp
point of V , we simply need to sum up the points
xðV Þ ¼

P
Vatom2V xðVatomÞ, which will take OðnÞ time. We

also compute the stamp point of the entire relation xðRÞ,
since the stamp point of �SS ¼ R n S, the complement of S,
can be easily computed from xð �SSÞ ¼ xðRÞ ÿ xðSÞ.
Example 3.1. Suppose we are given a relation R with

categorical attributes A and C. Let A be a target attribute,
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and C be a conditional attribute. The SQL query in Fig. 1

will count the number of records for each distinct value

of A and value of C to generate the stamp points of the

atomic value groups:

In the rest of the paper, we use P as a set of all stamp

points of value groups and Patom � P as a set of all stamp

points of atomic value groups. We define ConvðP Þ to be the

convex hull of P .

3.2 Greedy Enumeration Algorithm

Let us consider the case in which the target domain size is

two. Any stamp point of P can be characterized as a point

in 2-dimensional space, i.e., x ¼ ðx1; x2Þ. In this case, there

must be an Oðn lognÞ algorithm for the optimal value group

problem if the objective function is convex, as proved in [4].

The following is one such algorithm:
Algorithm 3.1 (Greedy Enumeration)

1. Sort points in Patom in descending order of
y ¼ x1=ðx1 þ x2Þ, taking Oðn lognÞ time.

2. p0 ¼ ð0; 0Þ
3. For i ¼ 1 to n,

a. Let xi be the ith point of the ordered point
sequence.

b. pi ¼ piÿ1 þ xi.
c. Examine the stamp point pi by an objective

function.

Theorem 3.1. Algorithm 3.1 scans all points of ConvðP Þ and

finds the optimal answer in Oðn lognÞ time.

Proof. We will show that Step 3 scans the upper chain of

ConvðP Þ (see Fig. 2). Let fx1; x2; � � � ; xng be the ordered

point sequence of Patom in descending order of

x1=ðx1 þ x2Þ, and let p0 be the origin ð0; 0Þ.
p0 is on the convex hull. p1 ¼ p0 þ x1 is also on the

convex hull, since, if there is a point above p0p1, there
must be a stamp point whose x1=ðx1 þ x2Þ is larger than
that of x1. This is a contradiction. Similarly, it is easy to
see that if pi is on the upper convex hull, piþ1 is also on
the convex hull.

We do not have to scan the lower chain of the convex
hull since the upper and the lower chains are symmetric.
There are n points on the upper chain of ConvðP Þ and it
takes a constant time to examine the objective function
for each point. Hence, the Oðn lognÞ cost for sorting
points in Patom dominates the time complexity of this
algorithm. tu

Example 3.2. To illustrate this algorithm by using Fig. 2, we

assume the stamp points of eight atomic value groups

shown in Table 2.
Those stamp points are ordered by x1=ðx1 þ x2Þ. Let

p0 be the origin and let pi ¼ piÿ1 þ xi for i ¼ 1; . . . ; 8. The
point sequence of pi (i ¼ 1; . . . ; 8) is the upper chain of
the convex hull of all stamp points.

This algorithm is not applicable to cases in which the

target domain size k is greater than two.

3.3 Enumeration Algorithm

If k > 2, we project all points of Patom in the k-dimensional

space into points y ¼ ðx1=kxk; x2=kxk; . . . ; xkÿ1=kxkÞ in the

ðkÿ 1Þ-dimensional space where kxk ¼
Pk

i¼1 xi. Let H be a

ðkÿ 2Þ-dimensional) hyperplane that contains at least kÿ 1

linearly independent points. H splits the projected space

into two halfspaces, i.e., an upper side and a lower side of

H. We can define a value group V ðHÞ that corresponds to

the union of the projected points in the upper (or lower)

halfspace of H. Let xðV ðHÞÞ be the stamp point of V ðHÞ.
Theorem 3.2. The stamp point xðV ðHÞÞ must be a point on

ConvðP Þ. Conversely, each vertex of ConvðP Þ can be

represented as xðV ðHÞÞ for a suitable hyperplane H.

Proof. We first prove the first statement of the theorem.

Assume a ðkÿ 2Þ-dimensional hyperplane H : a1y1 þ
a2y2 þ � � � þ akÿ1ykÿ1 ¼ ak in the projected space. Each

projected point in the upper halfspace of H must be

a1y1 þ a2y2 þ � � � þ akÿ1ykÿ1 � ak. That is equivalent to
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ða1 ÿ akÞx1 þ ða2 ÿ akÞx2 þ � � � þ ðakÿ1 ÿ akÞxkÿ1 ÿ akxk �
0 in the original k-dimensional space.

Any point of ConvðP Þmust have a ðkÿ 1Þ-dimensional
tangential hyperplane. If the tangential hyperplane has a
normal vector �, the hyperplane maximizes (or mini-
mizes) the inner product ð�; xÞ. If a point maximizes (or
minimizes) the inner product, it must be the tangential
point of the hyperplane and ConvðP Þ.

Let V þ be the value group that is defined by the upper
halfspace of H. And let

�V ¼ ða1 ÿ ak; a2 ÿ ak; � � � ; akÿ1 ÿ ak;ÿakÞ:

The stamp point of V þ maximizes ð�V ;xÞ among P ,

since if there is a point whose ð�V ;xÞ is larger than V þ,

there must be an atomic point whose ð�V ;xÞ is

nonnegative except points in V þ or there must be an

atomic point whose ð�V ;xÞ is negative in V þ. It is

contradiction. Therefore, the stamp point of V þ is a point

of ConvðP Þ. The second half can be proved in a similar

manner. tu

Theorem 3.3. We can enumerate all of the vertices on ConvðP Þ
by examining all combination of kÿ 1 atomic points.

Proof. A set of kÿ 1 linearly independent points in the

projected space identifies a ðkÿ 2Þ-dimensional hyper-

plane H : a1y1 þ a2y2 þ � � � þ akÿ1ykÿ1 ¼ ak that corre-

sponds to a ðkÿ 1Þ-dimensional hyperplane

S : ða1 ÿ akÞx1 þ ða2 ÿ akÞx2 þ � � � þ
ðakÿ1 ÿ akÞxkÿ1 ÿ akxk ¼ 0

which contains the origin. The hyperplane S, which

contains kÿ 1 linearly independent points, splits Patom

into two groups. Note that S and two tangential

hyperplanes, each of which contains the stamp point of

the corresponding group, have identical normal vector

�. Since we are focusing on enumerating different value

groups, it is enough to examine all combinations of kÿ 1

atomic points and corresponding values of �. tu
Thanks to Theorems 3.2 and 3.3, the following algorithm

enumerates all vertices on ConvðP Þ:
Algorithm 3.2 (Enumeration)

1. Project Patom into the ðkÿ 1Þ-dimensionalÞ space:

x ¼ ðx1; � � � ; xkÞ7!y ¼ ðx1=kxk; � � � ; xkÿ1=kxkÞ:

2. For each combination of kÿ 1 projected points,

a. If the kÿ 1 points are linearly independent,

i. Define a ðkÿ 2Þ-dimensionalÞ hyperplane H
containing the kÿ 1 points.

ii. Initialize a stamp point for a value group,
p ¼ 0.

iii. For each atomic point xi of the projected
points, let p ¼ pþ xi if xi 7!yi is in the
upper halfspace associated with H.

iv. Evaluate p by means of an objective
function.

Lemma 2.1 proves that one of the points on the convex

hull gives the optimal value group. Therefore, we can

concentrate on enumerating all the combinations of kÿ 1

projected points in order to find the optimal value group.

Example 3.3. To explain the Enumeration Algorithm, let us

consider the data in Table 3, whose target domain size k

is three and conditional domain size n is four.
For each stamp point xðfcigÞ ¼ ðx1; x2; x3Þ of Patom in

three-dimensional space, we consider a projected point
y ¼ ðy1 ¼ x1=ðx1 þ x2 þ x3Þ, y2 ¼ x2=ðx1 þ x2 þ x3ÞÞ i n
two-dimensional space. Fig. 3 illustrates the two-dimen-
sional space. A straight line H in the projected space,
which can be identified by two points, splits the
projected points y into two groups.

ThebrokenlineH inFig.3,whichis0:0y1 þ 1:0y2 ¼ 0:25,
splits the atomic points into two group: V þ ¼ fc1; c2; c3g
and V ÿ ¼ fc4g. H corresponds to a plane S : ÿ0:25x1 þ
0:75x2 ÿ 0:25x3 ¼ 0 in the original three-dimensional
space. The value group V þ (respectively, V ÿ) maximizes
(respectively, minimizes) the inner product with the
normal vector � ¼ ðÿ0:25; 0:75;ÿ0:25Þ of S (See also
Section 3.5.1).

Let n be a conditional domain size of C. Since one

splitting is defined by kÿ 1 projected points of n atomic

values, there are Oðnkÿ1Þ, i.e., nCkÿ1, different combinations,

and it will take OðnÞ time to obtain the coordinates of a

stamp point of a value group. Therefore, the time complex-

ity of the Enumeration Algorithm 3.2 is OðnkÞ. There is a

way to improve this complexity to Oðnkÿ1Þ by using a

sophisticated computational geometry algorithm [1]. How-

ever, if k and n become large, it is still costly.

3.4 Random Enumeration Algorithm

To reduce the complexity of the Enumeration Algorithm,

we 1) take an s-sized random sample from Patom, 2) project
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TABLE 3
Four 3D Stamp Points
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the sample into ðkÿ 1Þ-dimensional space, and 3) apply the
Enumeration Algorithm to the sample.

Algorithm 3.3 (Random Enumeration)

1. Choose fx1;x2; � � � ;xsg atomic values at random, so
that each atomic value x is chosen with probability
kxks=jxðRÞj. Recall that jxðRÞj is the total number of
records in the database.

2. Project the sample into the ðkÿ 1Þ-dimensional space:

x ¼ ðx1; � � � ; xkÞ7!y ¼ ðx1=kxk; � � � ; xkÿ1=kxkÞ:

3. For each combination of kÿ 1 points of the s sample
points,

a. If the kÿ 1 points are linearly independent,

i. Define a ðkÿ 2Þ-dimensional) hyperplane H
containing the kÿ 1 points.

ii. Initialize the stamp point of a value group,
p ¼ 0.

iii. For each atomic value bfxi of Patom, let p ¼
pþ xi if xi 7!yi is in the upper halfspace
associated with H.

iv. Evaluate p by means of an objective
function.

The time complexity of this randomized algorithm
becomes Oðskÿ1nÞ because it is proportional to sCkÿ1, and
can be further improved to Oðskÿ2nÞ. This algorithm needs
only a small working space and is easy to parallelize.

3.4.1 Quality Analysis on Sample Size

As we have shown above, the optimal solution is given as
a subdivision of atomic stamp points by a hyperplane cut
in ðkÿ 1Þ-dimensional space. From the PAC learning
theory, such a subdivision can be closely approximated
by using a small number of samples. Let Y be the set of
points in ðkÿ 1Þ-dimensional space and Z be a random
sample from Y . We say that Z is an �-net for a region
family if jX \ Y j=jY j � � holds for every region X of the
family satisfying X \ Z ¼ ;.

Note that our sample strategy is weighted sampling.
First, we consider the unweighted case where jxj ¼ 1 for
each x. Suppose that the optimal value group Vopt is given
by a hyperplane Hopt. Let us consider the family of wedges
bounded by Hopt and another hyperplane. This family of
wedges defines at most OðnkÞ different value groups of n
points, roughly speaking, because the Vapnik-Chervonen-
kis dimension is k and, hence, it is known [15], [2] that a
random sample of size

sð�Þ ¼ �ÿ1 maxf6k logð16k�ÿ1Þ; 4 logð2�ÿ1Þg

is an �-net with a probability of at least 1ÿ �. Note that sð�Þ
is independent of n ¼ jY j.

Let us take a sample that is an �-net for our wedges,
and let Vsample be the value group obtained by the sample
maximizing the objective function (e.g., Gini(x)) F . There
exists a value group V 0sample obtained as the sample such
that the edge bounded by Hopt and H 0sample (the hyper-
plane associated with V 0sample) contains no sample point.
Since our sample is an �-net, the set difference between

the value groups V 0sample and Vopt contains at most �n

points. Fig. 4 shows a sample that is an �-net when k ¼ 2.
The gray wedge in the figure shows a subdivision
bounded by Hopt and H 0sample.

For the weighted case, we consider each value group x
as a set of jxj copies of the point to obtain the result that
if we take sð�Þ samples, then the set difference between
the value groups V 0sample and Vopt contains points whose
total weight is at most �jxðRÞj.

By definition, F ðxðVsampleÞÞ � F ðxðV 0sampleÞÞ and, hence,
we have a lower bound of F ðxðVsampleÞÞ. For example, we
can show that

GiniðxðVoptÞÞ ÿGiniðxðVsampleÞÞ � 2�þ ��2;

where � ¼ jRjðjVoptjÿ1 þ jVoptjÿ1Þ. Since, we do not want to
find a subdivision with a very large �, this is a good
approximation if � is small.

We can use the theory of �-approximation for the k-labeled
space given by Hasegawa et al. [14] to avoid introducing �
into the analysis. Theoretically, if we want to make � ¼ 0:01,
sð0:01Þ ¼ 600k logð1600kÞ, which is very large. However, the
theoretical bound is very pessimistic, and a much smaller
sample is sufficient, as we will show by experiment later.

3.5 Probing Algorithm

3.5.1 Hand Probing

The Probing Algorithm also searches for stamp points on
ConvðP Þ. Computing a stamp point on ConvðP Þ and its
corresponding value group without knowing the coordi-
nates of the point is called hand probing in the field of
computational geometry [6]. Geometrically, hand probing
in a k-dimensional space means computing a tangential
point of a ðkÿ 1Þ-dimensional) hyperplane and ConvðP Þ.

Any tangential hyperplane in a k-dimensional space has
a normal vector � ¼ ð�1; �2; � � � ; �kÞ. By giving a k-dimen-
sional vector �, we can compute the tangential point p of
the hyperplane and ConvðP Þ by maximizing (or minimiz-
ing) the inner product ð�;pÞ.
Example 3.4. Let us consider once again the Example 3.3.

The tangential point of a hyperplane with a normal
vector � ¼ ðÿ0:25; 0:75;ÿ0:25Þ maximizes (or mini-
mizes) the inner product

ð�;xÞ ¼ ÿ0:25x1 þ 0:75x2 ÿ 0:25x3:

We compute the inner product ð�;xÞ for each stamp
point of Patom ¼ fc1; � � � ; c4g as shown in Table 4.
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The value group corresponding to the hand probing is
the union of those terms whose inner product is
nonnegative (respectively, negative). The coordinates of
the tangential point (value group) can be obtained by
summing up the coordinates of those terms. In this
example, C ¼ c1 _ c2 _ c3 (respectively, C ¼ c4) is the
value group, and the tangential point is ð60; 50; 50Þ
(respectively, ð30; 10; 40Þ).

The time complexity to compute a stamp point p
maximizing ð�;pÞ for a given � is OðnÞ, where n is the
conditional domain size.

3.5.2 Convex Hull Searching

We have shown that stamp points on ConvðP Þ can be
computed efficiently by using hand probing. Now, let us
consider how to find the optimal points on ConvðP Þ.

Various convex hull algorithms have been studied
intensively [21], since many problems, such as optimized
numeric association rules [11], [10], [12], two-dimensional
association rules [9], [26] in data mining, classification and
regression trees [8], [17], [18], can be interpreted as convex
hull problems. The Probing Algorithm uses an online
convex hull maintenance algorithm called the “beneath-
beyond” method.

First of all, we compute k different points, which are
linearly independent, by using hand probings withkdifferent
random vectors. Consequently, we have 2k points. Empiri-
cally, a vector �init satisfying ð�init;xðRÞÞ ¼ 0 determines a
satisfactory point as an initial stamp point with respect to a
convex criterion. The line containing the origin and xðRÞ is the
central lineof theconvexhull,andahyperplanewhosenormal
vector is �init is parallel to the line. Therefore, we include such
vectors in the initial set of kvectors. Strictly speaking, we may
not be able to find k linearly independent points in a
k-dimensional space by any hand probing. In this case, we
project all points into a ðkÿ 1Þ-dimensional and solve the
problem as a ðkÿ 1Þ-dimensional one.

We can define an inscribed convex polygon whose
vertices are the initial 2k points, inside ConvðP Þ. We can
also define a circumscribed polygon whose facets are
tangential hyperplanes used by hand probings. Fig. 5
shows examples of inscribed and circumscribed polygons
of ConvðP Þ in two-dimensional space, i.e., k ¼ 2.

Let I � P be a set of vertices of an inscribed convex
polygon, and let C be a set of intersecting points of
tangential hyperplanes of ConvðP Þ that are vertices of an
circumscribed convex polygon. Thanks to Lemma 2.1, we
know stamp points inside ConvðIÞ are not better than the
best vertex of I. If we consider a facet of ConvðIÞ, the stamp
points between ConvðCÞ and the facet are not better than
the corresponding vertex of ConvðCÞ and the vertices of the
facet. For example, if we consider the facet f1 in Fig. 5, the
stamp points inside the gray triangular region can not be
better than v1, v2, and v3. Therefore, the value of a vertex of

C gives a lower bound of corresponding points on ConvðP Þ
inside ConvðCÞ and ConvðIÞ.

The guided branch-and-bound search method [8], [17],

[18] recursively refines the inscribed and circumscribed

polygons. It efficiently finds the optimal point onConvðP Þ by

using those lower bounds to order and drop candidate facets.

However, there are as many as ðnkÿ1Þb
k
2c facets on ConvðP Þ.

The method needs to maintain ConvðIÞ and ConvðCÞ that

may have as many facets asConvðP Þ has. Therefore, it is only

applicable when k is small enough for the available working

space.
In the Probing Algorithm, we predefine the size of the

working space that is used to maintain facets of ConvðIÞ
and drop facets so that it works within the limited working

space.
The following algorithm is the essential part, which

contains refinement procedure of facet queue of the

inscribed polygon, of the Probing Algorithm.
Algorithm 3.4 (Probing)

1. Initialize a facet queue Q from I
2. For the first facet f of Q

a. Compute the normal vector � of f .
b. Compute a tangent point of ConvðP Þ by using

hand probing with �.
c. If a new point x is found,

i. Refine I :¼ I [ x.
ii. Create new facets by using x.
iii. Replace the facets in Q.

In each refinement procedure, we can make at least
k facets outside of the inscribed convex polygon. Fig. 6 is an
example for a three-dimensional case. If we find x by hand
probing with the normal vector of the facet f1; 2; 3g, we add
three facets fx; 2; 3g, f1; x; 3g, f1; 2; xg. If k is large, the
limited working space may run out after several refinement
procedures. We maintain Q as a priority queue. We decide
the priority of new facets based on the value of the new
point. In the example, the value of x is used for the three
new facets.

We empirically find that stamp points for which the
value of the objective criterion exceeds the best value tend
to lie near the best point or near the points that are closest to
the best value. The above heuristics help to find a high
quality result in an earlier step of the algorithm.
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TABLE 4
Inner Product of Each Stamp Point
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Furthermore, in order to prevent too many excessively
small expansions of the convex polygon, we use a distance
threshold. If the distance between a facet and a new point is
smaller than a given threshold, the new facets that contain
the new point are pruned away. This heuristic also helps to
speed up the searching.

Though the expected running time of the Probing
Algorithm is still substantial, it can find a satisfactory point
in a period much shorter than the running time, and can
return the intermediate value group interactively.

4 EXPERIMENTS

We implemented the proposed algorithms and performed
several experiments to evaluate their performance. All
experiments were performed on an IBM RS/6000 work-
station with a POWER2 processor running at 66 MHz with
2 MB of L2 cache and 256 MB of real memory.

In this experiment, we generated synthetic data with n ¼
1; 000 (conditional domain size) and various values of k
(target domain size) to simulate a very large categorical
database. Each type of data set has 10,000 records and two
categorical attributes, C and A. The conditional attribute C
takes c1; � � � ; cn distinct values. The target attribute A takes
a1; � � � ; ak distinct values. For each record of the synthetic
data, we randomly and independently assign a value of C
and a value of A. For purposes of comparison, we use the
“two-ing” which is used in the CART system to compute a
binary segmentation. Note that another well-known con-
ventional heuristic used in C4.5 is unsuitable for large n and
does not perform well in this condition.

4.1 Random Enumeration Algorithm

Fig. 7 shows the relationship between the execution time for
a single run and the improvement in the gini index gained
by a value group obtained by the Random Enumeration

Algorithm for various sample sizes. The target domain sizes
k are 4 and 6. The numbers in the graph represent the
sample sizes. Each error-bar (vertical line) indicates the
range between the best and worst results of 32 runs for each
sample size. The results of the 32 runs are distributed
throughout the range, and each point on the range shows
the average value of these results.

The “two-ing” method deterministically computes a
value group for each problem. Each diamond mark in the
figures indicates the time taken to compute the value group
and the improvement in the gini index achieved by the
value group. We draw a horizontal broken line for each
diamond mark so that our algorithms can be easily
compared with the “two-ing” method. Though the “two-
ing” gives the optimal value group of a certain superclass
obtained by grouping k classes, the heuristic is known to
find a relatively good approximated value group.

From this experiment, we can see that the Random
Enumeration Algorithm generates a result of satisfactory
quality within a practical time when the sample size is
around 20. Note that the best result of the 32 runs is better
than the result of the “two-ing” method, even if we use a
small sample size. The CPU time taken for a single run is
almost proportional to sCkÿ1.

When k becomes larger, we have to use a small sample
size s so that the algorithm can terminate in a practical
amount of time. However, a small sample often gives low-
quality results. To overcome this problem, we run this
algorithm with a small sample a number of times, and take
the best result. Fig. 8 shows the relationship between the
execution time for 32 runs and the best improvement in the
gini index of the 32 runs when k ¼ 8 and 10.

The Random Enumeration Algorithm achieved better or
comparable results with a small sample in 32 runs. Those
multiple trials can be executed independently. Therefore,
we can expect better results if we can use a parallel
environment.

4.2 Probing Algorithm

Fig. 9 shows the extent to which the gini index value is
improved by the Probing Algorithm, along with the time
taken in seconds. Thanks to the heuristics for maintaining
the facet queue, we can observe that when the Probing
Algorithm found a better result, it often found a still better
result within a short period of time. As a result, the Probing
Algorithm tends to find a satisfactory value group relatively
quickly. Such a value group, which is much better than the

MORIMOTO ET AL.: ALGORITHMS FOR FINDING ATTRIBUTE VALUE GROUP FOR BINARY SEGMENTATION OF CATEGORICAL DATABASES 1277

Fig. 6. Inscribed polygon refinement.

Fig. 7. Performance of the Random Enumeration Algorithm (1).

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on February 21,2010 at 20:01:27 EST from IEEE Xplore.  Restrictions apply. 



result given by the “two-ing” method, is satisfactory for
most applications. Thus, the Probing Algorithm returns an
intermediate result in a practical time.

One defect of the Probing Algorithm is its required
working space when k becomes large. However, it can
usually find a satisfactory result before its working space
becomes too large. In the experiment for k ¼ 10, the
working space of the Probing Algorithm is less than
64 MB, which is acceptable on most workstations, when
the best result in the graph was obtained. In these
experiments, we limited the working space of the Probing
Algorithm to 130 MB.

These experiments used synthetic databases whose
values are randomly assigned. We have tried similar
experiments by using other synthetic and real databases
whose values are skewed. We observed that the perfor-
mance of our algorithms is basically the same for such
skewed cases.

The results of the experiments show that both the
Random Enumeration Algorithm and the Probing Algo-
rithm found a better value group than the “two-ing”
method in a practical time, and that both are feasible.

5 CONCLUDING REMARKS

We have proposed geometric algorithms for finding value
groups that make high quality binary segmentations of a
categorical database. We can use the “gini index,” “en-
tropy,” or “�2” as an objective criterion to indicate the
extent to which the values of a target attribute are skewed
from the original distribution. High quality value groups
with respect to these criteria provide us with a clue to
understanding the target attribute.

Though the complexities are Oðskÿ2nÞ for the Random
Enumeration Algorithm and OððnþmÞjP jÞ for the Probing
Algorithm, we derived practical implementations by using
randomization and strategic facet maintenance. Various
experiments confirmed that the algorithms could find
satisfactory value groups within reasonable computation
times. The quality of the results obtained for various
samples by the Random Enumeration Algorithm differs
dramatically if we use a small sample size. Therefore,
multiple trials are needed to obtain better value groups.
Those trials can be executed independently and in
parallel; thus, the Random Enumeration Algorithm is
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suitable for a parallel environment. On the other hand, the

quality of the Probing Algorithm becomes stable after a

certain amount of execution time. However, it requires a

large working space compared to the Random Enumera-

tion Algorithm. Since the available memory size is

increasing, the practical applicability of the Probing

Algorithm seems to be promising.
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