11 research outputs found

    āļāļēāļĢāđ€āļžāļīāđˆāļĄāļœāļĨāļœāļĨāļīāļ•āđāļĨāļ°āļĨāļ”āļ•āđ‰āļ™āļ—āļļāļ™āđƒāļ™āļāļēāļĢāđ€āļžāļēāļ°āļ›āļĨāļđāļāļŦāļ™āđˆāļ­āđ„āļĄāđ‰āļāļĢāļąāđˆāļ‡āļ”āđ‰āļ§āļĒāļ­āļīāļ™āđ€āļ•āļ­āļĢāđŒāđ€āļ™āđ‡āļ•āļ‚āļ­āļ‡āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡ Increasing Yield and Reducing the Cost of Cultivation of Asparagus with the Internet of Things

    No full text
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļāļēāļĢāļ­āļ­āļāđāļšāļšāđāļĨāļ°āļŠāļĢāđ‰āļēāļ‡āļĢāļ°āļšāļšāļāļēāļĢāļšāļĢāļīāļŦāļēāļĢāļˆāļąāļ”āļāļēāļĢāļ™āđ‰āļģāđƒāļ™āđ„āļĢāđˆāļŦāļ™āđˆāļ­āđ„āļĄāđ‰āļāļĢāļąāđˆāļ‡āļšāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆ 6,760 āļ•āļēāļĢāļēāļ‡āđ€āļĄāļ•āļĢ āļ”āđ‰āļ§āļĒāļĢāļ°āļšāļšāļ­āļīāļ™āđ€āļ—āļ­āļĢāđŒāđ€āļ™āđ‡āļ•āļ‚āļ­āļ‡āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡ āđ€āļžāļ·āđˆāļ­āđ€āļžāļīāđˆāļĄāļœāļĨāļœāļĨāļīāļ•āđāļĨāļ°āļĨāļ”āļ•āđ‰āļ™āļ—āļļāļ™āļĢāļ§āļĄāļ–āļķāļ‡āļ›āđ‰āļ­āļ‡āļāļąāļ™āļ„āļ§āļēāļĄāđ€āļŠāļĩāļĒāļŦāļēāļĒāļ­āļąāļ™āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļ™āđ‰āļģāļ—āđˆāļ§āļĄāļ āļēāļĒāđƒāļ™āđ„āļĢāđˆāļŦāļ™āđˆāļ­āđ„āļĄāđ‰āļāļĢāļąāđˆāļ‡ āđ‚āļ”āļĒāļĄāļĩāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ„āļ·āļ­āđƒāļŠāđ‰āļ•āļąāļ§āļĢāļąāļšāļĢāļđāđ‰āļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļ”āļīāļ™ āļ•āļąāļ§āļĢāļąāļšāļĢāļđāđ‰āļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āđāļĨāļ°āļ­āļļāļ“āļŦāļ āļđāļĄāļīāđāļ§āļ”āļĨāđ‰āļ­āļĄ āļ•āļąāļ§āļĢāļąāļšāļĢāļđāđ‰āļ™āđ‰āļģāļāļ™ āļ•āļąāļ§āļĢāļąāļšāļĢāļđāđ‰āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļĨāļĄ āļāļēāļĢāļ­āļ­āļāđāļšāļšāđāļĨāļ°āļŠāļĢāđ‰āļēāļ‡āļŠāļļāļ”āļ„āļ§āļšāļ„āļļāļĄāļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ›āļąāđŠāļĄāļ™āđ‰āļģāļšāđˆāļ­āļšāļēāļ”āļēāļĨ āļŠāļĢāđ‰āļēāļ‡āļŠāļļāļ”āļ„āļ§āļšāļ„āļļāļĄāļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ›āļąāđŠāļĄāļ™āđ‰āļģāļĢāļ°āļšāļēāļĒāļ™āđ‰āļģāļāļ™āļ—āļīāđ‰āļ‡ āļŠāļĢāđ‰āļēāļ‡āļŠāļļāļ”āļˆāđˆāļēāļĒāļ™āđ‰āļģāļĢāļ°āļšāļšāļŠāļ›āļĢāļīāļ‡āđ€āļāļ­āļĢāđŒ āļ­āļ­āļāđāļšāļšāļĢāļ°āļšāļšāļāļēāļĢāļŠāđˆāļ‡āļ™āđ‰āļģāđ€āļ‚āđ‰āļēāļ āļēāļĒāđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļšāļĢāļīāđ€āļ§āļ“āđ„āļĢāđˆāļŦāļ™āđˆāļ­āđ„āļĄāđ‰āļāļĢāļąāđˆāļ‡āļ”āđ‰āļ§āļĒāļ—āđˆāļ­ PVC āļˆāļēāļāļ™āļąāđ‰āļ™āļ­āļ­āļāđāļšāļšāđāļĨāļ°āđ€āļ‚āļĩāļĒāļ™āđ‚āļ›āļĢāđāļāļĢāļĄ Arduino IDE āđ€āļžāļ·āđˆāļ­āļ•āļīāļ”āļ•āđˆāļ­āļāļąāļšāđ‚āļŦāļ™āļ”āđ€āļ­āđ‡āļĄāļ‹āļĩāļĒāļđ ESP8266 āļ—āļĩāđˆāļĄāļĩāļŠāļīāļ› WiFi āļ„āļĨāļ·āđˆāļ™āļ„āļ§āļēāļĄāļ–āļĩāđˆ 2.4 GHz  āļāļąāđˆāļ‡āļ”āđ‰āļēāļ™āđ€āļ™āđ‡āļ•āđ€āļ§āļīāļĢāđŒāļāđƒāļŠāđ‰āļ„āļĨāļēāļ§āļ”āđŒāđ€āļ‹āļīāļĢāđŒāļŸāđ€āļ§āļ­āļĢāđŒāļ‚āļ­āļ‡āđ€āļ™āđ‡āļ•āļžāļēāļĒāđ€āļ›āđ‡āļ™āļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄ āđāļŠāļ”āļ‡āļœāļĨ (āđāļ”āļŠāļšāļ­āļĢāđŒāļ”āđāļĨāļ°āļŸāļĩāļ”) āđāļĨāļ°āđ€āļāđ‡āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļ•āđˆāļēāļ‡āđ† āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ€āļāļĐāļ•āļĢāļāļĢāļ—āļĢāļēāļšāļ‚āđ‰āļ­āļĄāļđāļĨāđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļ—āļąāļ™āļ—āļĩāļ—āļąāļ™āđƒāļ” āļœāļĨāļĨāļąāļžāļ˜āđŒāļˆāļēāļāļāļēāļĢāđ€āļāđ‡āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļ•āļĨāļ­āļ”āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļē 60 āļ§āļąāļ™ āļ—āļģāđƒāļŦāđ‰āļ—āļĢāļēāļšāļ§āđˆāļēāļĢāļ°āļšāļšāļāļēāļĢāđƒāļŦāđ‰āļ™āđ‰āļģāļ āļēāļĒāđƒāļ™āđ„āļĢāđˆāļŦāļ™āđˆāļ­āđ„āļĄāđ‰āļāļĢāļąāđˆāļ‡āđƒāļŦāđ‰āļĄāļĩāļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļ­āļĒāđˆāļēāļ‡āļŠāļĄāđˆāļģāđ€āļŠāļĄāļ­āļ”āđ‰āļ§āļĒāļĢāļ°āļšāļšāļāļēāļĢāļŠāļ›āļĢāļīāļ‡āđ€āļāļ­āļĢāđŒāļ—āļĩāđˆāđƒāļŠāđ‰āļ­āļīāļ™āđ€āļ—āļ­āļĢāđŒāđ€āļ™āđ‡āļ•āļ‚āļ­āļ‡āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡āđ€āļ›āđ‡āļ™āļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāđƒāļŦāđ‰āļœāļĨāļœāļĨāļīāļ•āļĄāļēāļāļāļ§āđˆāļēāļāļēāļĢāđƒāļŦāđ‰āļ™āđ‰āļģāđāļšāļšāļ›āļĨāđˆāļ­āļĒāļ™āđ‰āļģāđ„āļŦāļĨāļ•āļēāļĄāļĢāđˆāļ­āļ‡āđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ—āļ”āļŠāļ­āļšāļ§āļīāļ˜āļĩāļāļēāļĢāļĨāļ° 1 āđ„āļĢāđˆāđ€āļ—āđˆāļēāđ† āļāļąāļ™ āđ€āļĄāļ·āđˆāļ­āđ€āļŠāļĢāđ‡āļˆāđāļĨāđ‰āļ§āđ„āļ›āļ„āļģāļ™āļ§āļ“āđ€āļ—āļĩāļĒāļšāļāļąāļšāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļˆāļĢāļīāļ‡āļ—āļĩāđˆ 4.22 āđ„āļĢāđˆ āđ€āļ—āļĩāļĒāļšāļœāļĨāļœāļĨāļīāļ• 4 āļĢāļ­āļš āļāļĢāļ“āļĩāļ”āļĩāļŠāļļāļ”āļāļēāļĢāđƒāļŠāđ‰āļĢāļ°āļšāļš IoT āļŠāļēāļĄāļēāļĢāļ–āđƒāļŦāđ‰āļœāļĨāļœāļĨāļīāļ•āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ 12.8% āļĨāļ”āļ•āđ‰āļ™āļ—āļļāļ™ 99,246 āļšāļēāļ—/āļ›āļĩāđāļĨāļ°āđƒāļŠāđ‰āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļāļēāļĢāļ„āļ·āļ™āļ—āļļāļ™āđ€āļžāļĩāļĒāļ‡ 1.04 āļ›āļĩ āđ€āļ—āđˆāļēāļ™āļąāđ‰āļ™This research is the designing and constructing of a watering management system on a 6,760 square meter asparagus farming area using the Internet of Things approach to increase productivity, reduce cost, and prevent flooding as well. Processes in this study include utilizing multiple sensors such as soil moisture sensor, ambient humidity and temperature sensor, rainfall sensor and wind speed sensor, designing and developing a groundwater pump control system, a rainfall drainage pump control system, a water distribution control for a sprinkler system, and a plumbing system on the farm area using PVC pipe.  In addition, there is also the creation and development of an Arduino IDE script for communicating with the microcontroller, Node MCU ESP8266, with a 2.4 GHz WiFi chip. A NETPIE Cloud Server is utilized for controlling and displaying (Dashboard and Feed) multiple data to simultaneously inform farmers. In conclusion, results from 60 days of data collection suggest that the asparagus watering system which can regulate soil moisture using a sprinkler process controlled by the Internet of Things can promote more productivity than that of the conventional system on the same plantation area of 1 Rai.  Of this result, in comparison with the real plantation area by scaling up to 4.22 Rai with a production of 4 crops per year, the calculation shows that the best practice of the IoT system can increase productivity by 12.8% and reduce cost by 99,246 baht per year implying that the return period is only 1.04 year.Keywords: āļŦāļ™āđˆāļ­āđ„āļĄāđ‰āļāļĢāļąāđˆāļ‡; āļ­āļīāļ™āđ€āļ•āļ­āļĢāđŒāđ€āļ™āđ‡āļ•āļ‚āļ­āļ‡āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡; āđ‚āļŦāļ™āļ”āđ€āļ­āđ‡āļĄāļ‹āļĩāļĒāļđ ESP8266; āđ€āļ™āđ‡āļ•āļžāļēāļĒ; Asparagus; Internet of Things; Node MCU ESP8266; NETPI

    Design and Construction of Compost Production System Controlled by the Internet of Things āļāļēāļĢāļ­āļ­āļāđāļšāļšāđāļĨāļ°āļŠāļĢāđ‰āļēāļ‡āļĢāļ°āļšāļšāļāļēāļĢāļœāļĨāļīāļ•āļ›āļļāđ‹āļĒāļŦāļĄāļąāļāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļ”āđ‰āļ§āļĒāļ­āļīāļ™āđ€āļ•āļ­āļĢāđŒāđ€āļ™āđ‡āļ•āļ‚āļ­āļ‡āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡

    No full text
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļāļēāļĢāļ­āļ­āļāđāļšāļšāđāļĨāļ°āļŠāļĢāđ‰āļēāļ‡āļĢāļ°āļšāļšāļāļēāļĢāļœāļĨāļīāļ•āļ›āļļāđ‹āļĒāļŦāļĄāļąāļ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ§āļąāļ•āļ–āļļāļ”āļīāļšāļĄāļđāļĨāļ§āļąāļ§āđāļĨāļ°āļ•āđ‰āļ™āļŦāļ™āđˆāļ­āđ„āļĄāđ‰āļāļĢāļąāđˆāļ‡āļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļ”āđ‰āļ§āļĒāļ­āļīāļ™āđ€āļ•āļ­āļĢāđŒāđ€āļ™āđ‡āļ•āļ‚āļ­āļ‡āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡ āđ€āļžāļ·āđˆāļ­āļĨāļ”āļ•āđ‰āļ™āļ—āļļāļ™āļāļēāļĢāļ‹āļ·āđ‰āļ­āļ›āļļāđ‹āļĒāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒāđāļĨāļ°āļ›āļļāđ‹āļĒāđ€āļ„āļĄāļĩ āđ€āļžāļīāđˆāļĄāļ„āļ§āļēāļĄāļ­āļļāļ”āļĄāļŠāļĄāļšāļđāļĢāļ“āđŒāļ‚āļ­āļ‡āļ˜āļēāļ•āļļāļ­āļēāļŦāļēāļĢāđƒāļ™āļ”āļīāļ™ āļĢāļ§āļĄāļ–āļķāļ‡āļ‡āļ”āļāļēāļĢāļŠāļĢāđ‰āļēāļ‡āļĄāļĨāļ āļēāļ§āļ°āļ—āļēāļ‡āļ­āļēāļāļēāļĻāđ€āļ›āđ‡āļ™āļžāļīāļĐāļŠāļēāđ€āļŦāļ•āļļāļ­āļąāļ™āđ€āļ™āļ·āđˆāļ­āļ‡āļĄāļēāļˆāļēāļāļāļēāļĢāđ€āļœāļēāļ—āļģāļĨāļēāļĒāļ•āđ‰āļ™āļŦāļ™āđˆāļ­āđ„āļĄāđ‰āļāļĢāļąāđˆāļ‡ āđ‚āļ”āļĒāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļ—āļģāļ‡āļēāļ™āđ„āļ”āđ‰āļ‚āļķāđ‰āļ™āļāļ­āļ‡āļ›āļļāđ‹āļĒāļŦāļĄāļąāļāļˆāļģāļ™āļ§āļ™ 3 āļāļ­āļ‡ āļāļ­āļ‡āļ—āļĩāđˆ 1 āđƒāļŠāđ‰āđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāļ•āļąāđ‰āļ‡āđ€āļ§āļĨāļēāđƒāļ™āļāļēāļĢāļĢāļ”āļ™āđ‰āļģāļ āļēāļĒāđƒāļ™āļāļ­āļ‡āļ›āļļāđ‹āļĒ āļāļ­āļ‡āļ—āļĩāđˆ 2 āđƒāļŠāđ‰āđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāļĢāļ”āļ™āđ‰āļģāđƒāļ™āļāļ­āļ‡āļ‚āļķāđ‰āļ™āļāļąāļšāļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļ›āļļāđ‹āļĒāļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļ„āđˆāļēāđ„āļ§āđ‰ āđāļĨāļ°āļāļ­āļ‡āļ—āļĩāđˆ 3 āđƒāļŠāđ‰āđ€āļ—āļ„āļ™āļīāļ„āļ§āļīāļĻāļ§āļāļĢāļĢāļĄāđāļĄāđˆāđ‚āļˆāđ‰1 āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āđ„āļ”āđ‰āļ—āļģāļāļēāļĢāļ­āļ­āļāđāļšāļšāđāļĨāļ°āļŠāļĢāđ‰āļēāļ‡āļŠāļļāļ”āļ„āļ§āļšāļ„āļļāļĄāļĢāļ°āļšāļšāļāļēāļĢāļœāļĨāļīāļ•āļ›āļļāđ‹āļĒāļŦāļĄāļąāļ āļˆāļēāļāļ™āļąāđ‰āļ™āļ­āļ­āļāđāļšāļšāđāļĨāļ°āđ€āļ‚āļĩāļĒāļ™āđ‚āļ›āļĢāđāļāļĢāļĄ Arduino IDE āđ€āļžāļ·āđˆāļ­āļ•āļīāļ”āļ•āđˆāļ­āļāļąāļšāđ€āļ­āđ‡āļĄāļ‹āļĩāļĒāļđ ESP8266 āļāļąāđˆāļ‡āļ”āđ‰āļēāļ™āđ€āļ™āđ‡āļ•āđ€āļ§āļīāļĢāđŒāļāđƒāļŠāđ‰ Netpie 2020 āđ€āļ›āđ‡āļ™āļ•āļąāļ§āļ„āļ§āļšāļ„āļļāļĄāđāļĨāļ°āđāļŠāļ”āļ‡āļœāļĨ āđāļĨāļ°āđ„āļ”āđ‰āļ™āļģ Node-Red āđ€āļ›āđ‡āļ™āđ€āļāļ•āđ€āļ§āļĒāđŒāđ€āļžāļ·āđˆāļ­āļĢāļ­āļ‡āļĢāļąāļšāļāļēāļĢāđƒāļŠāđ‰ InfluxDB āđāļĨāļ° Grafana āđƒāļ™āļ­āļ™āļēāļ„āļ• āđāļĨāļ°āđ„āļ”āđ‰āļĄāļĩāļāļēāļĢāļŠāļģāļĢāļ­āļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļāļĢāļ“āļĩāļ—āļĩāđˆāļ„āļĨāļēāļ§āļ”āđŒāđ€āļ‹āļīāļĢāđŒāļŸāđ€āļ§āļ­āļĢāđŒāļ‚āļ­āļ‡ Netpie 2020 āđ€āļāļīāļ”āļ‚āļąāļ”āļ‚āđ‰āļ­āļ‡āđ‚āļ”āļĒāļāļēāļĢāđƒāļŠāđ‰ MySQL āļŠāļĢāđ‰āļēāļ‡āļāļēāļ™āļ‚āđ‰āļ­āļĄāļđāļĨāđ€āļžāļ·āđˆāļ­āđ€āļāđ‡āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļēāļāļ•āļąāļ§āļĢāļąāļšāļĢāļđāđ‰āļĨāļ‡āđƒāļ™āđ€āļ‹āļīāļĢāđŒāļŸāđ€āļ§āļ­āļĢāđŒ āđāļĨāļ°āđƒāļŠāđ‰Â Line notify āđƒāļ™āļāļēāļĢāđāļˆāđ‰āļ‡āļŠāļ āļēāļ§āļ°āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ‚āļ­āļ‡āļĢāļ°āļšāļš āđ€āļĄāļ·āđˆāļ­āļ™āļģāļ›āļļāđ‹āļĒāļ—āļĩāđˆāļŦāļĄāļąāļāļ•āļĨāļ­āļ”āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļē 60 āļ§āļąāļ™ āđ„āļ›āļ§āļąāļ”āļ›āļĢāļīāļĄāļēāļ“āđāļĢāđˆāļ˜āļēāļ•āļļāļ­āļēāļŦāļēāļĢ āļ˜āļēāļ•āļļāđ„āļ™āđ‚āļ•āļĢāđ€āļˆāļ™āđāļĨāļ°āļŸāļ­āļŠāđ€āļŸāļ­āļĢāļąāļŠāļ‚āļ­āļ‡āļ—āļąāđ‰āļ‡ 3 āļāļ­āļ‡ āļĄāļĩāļ„āđˆāļēāđƒāļāļĨāđ‰āđ€āļ„āļĩāļĒāļ‡āļāļąāļ™āđāļĨāļ°āļĄāļĩāļ„āđˆāļēāļŠāļđāļ‡āļāļ§āđˆāļēāļĄāļēāļ•āļĢāļāļēāļ™āļ‚āļ­āļ‡āļ›āļļāđ‹āļĒāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒ (āđ€āļāļĢāļ” A) āļŠāđˆāļ§āļ™āđ‚āļžāđāļ—āļŠāđ€āļ‹āļĩāļĒāļĄāļĄāļĩāļ„āđˆāļēāļ•āđˆāļģāļāļ§āđˆāļēāļĄāļēāļ•āļĢāļāļēāļ™ āđ‚āļ”āļĒāļĄāļĩāļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļāļēāļĢāļ„āļ·āļ™āļ—āļļāļ™āđƒāļ™āļāļēāļĢāļŠāļĢāđ‰āļēāļ‡āļĢāļ°āļšāļšāļ„āļ§āļšāļ„āļļāļĄāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļĄāļĩāļ„āđˆāļēāđ€āļžāļĩāļĒāļ‡ 2 āļ›āļĩ āđ€āļ—āđˆāļēāļ™āļąāđ‰āļ™This research focuses on designing and assembling a compost production system using cow manure and asparagus plants as raw materials. This system is controlled by the Internet of Things to reduce the cost of purchasing organic and chemical fertilizers, increase the fertility of nutrients in the soil, and reduce toxic air pollution caused by burning asparagus trees.  The process uses three compost piles. The first one uses the technique of scheduling watering inside the fertilizer pile. The second one uses watering techniques in piles based on the set fertilizer moisture, and the third pile uses Maejo engineering techniques number one.  This study includes designing and assembling compost pile control, then designing and programming an Arduino IDE to contact MCU ESP8266. The network side uses Netpie 2020 as a controller and display.  This research adopted Node-Red as a gateway to support the future use of InfluxDB and Grafana. To maintain system stability, a backup was made in case of a cloud server failure of Netpie 2020 using MySQL, creating a database to store data from the sensor into the server, and using Line notify to report the operating conditions of the system. The fertilizer composted over a period of 60 days was taken to measure the amount of minerals and nutrients, the nitrogen and phosphorus elements of all three stacks were similar which is greater than the standard level of organic fertilizer (grade A). However, the potassium level is substandard.  The payback period for setting us such a control system is only 2 years

    Gaseous Mercury Release during Steam Curing of Aerated Concretes That Contain Fly Ash and Activated Carbon Sorbent

    No full text
    Gaseous mercury released from aerated concrete during both presteam curing at 25 °C and steam curing at 80 °C was measured in controlled laboratory experiments. Mercury release originated from two major components in the concrete mixture: (1) class F coal fly ash and (2) a mixture of the fly ash and powdered activated carbon onto which elemental mercury was adsorbed. Mercury emitted during each curing cycle was collected on iodated carbon traps in a purge-and-trap arrangement and subsequently measured by cold-vapor atomic fluorescence spectrometry. Through 3 h of presteam curing, the release of mercury from the freshly prepared mixture was less than 0.03 ng/kg of concrete. Releases of total mercury over the 21 h steam curing process ranged from 0.4 to 5.8 ng of mercury/kg of concrete and depended upon mercury concentrations in the concrete. The steam-cured concrete had a higher mercury release rate (ng kg<sup>−1</sup> h<sup>−1</sup>) compared to air-cured concrete containing fly ash, but the shorter curing interval resulted in less total release of mercury from the steam-cured concrete. The mercury flux from exposed concrete surfaces to mercury-free air ranged from 0.77 to 11.1 ng m<sup>−2</sup> h<sup>−1</sup>, which was similar to mercury fluxes for natural soils to ambient air of 4.2 ng m<sup>−2</sup> h<sup>−1</sup> reported by others. Less than 0.022% of the total quantity of mercury present from all mercury sources in the concrete was released during the curing process, and therefore, nearly all of the mercury was retained in the concrete
    corecore