40 research outputs found

    MEG/EEG Group Analysis With Brainstorm

    Get PDF
    Brainstorm is a free, open-source Matlab and Java application for multimodal electrophysiology data analytics and source imaging [primarily MEG, EEG and depth recordings, and integration with MRI and functional near infrared spectroscopy (fNIRS)]. We also provide a free, platform-independent executable version to users without a commercial Matlab license. Brainstorm has a rich and intuitive graphical user interface, which facilitates learning and augments productivity for a wider range of neuroscience users with little or no knowledge of scientific coding and scripting. Yet, it can also be used as a powerful scripting tool for reproducible and shareable batch processing of (large) data volumes. This article describes these Brainstorm interactive and scripted features via illustration through the complete analysis of group data from 16 participants in a MEG vision study

    IntrAnat Electrodes: A Free Database and Visualization Software for Intracranial Electroencephalographic Data Processed for Case and Group Studies

    Get PDF
    In some cases of pharmaco-resistant and focal epilepsies, intracranial recordings performed epidurally (electrocorticography, ECoG) and/or in depth (stereoelectroencephalography, SEEG) can be required to locate the seizure onset zone and the eloquent cortex before surgical resection. In SEEG, each electrode contact records brain’s electrical activity in a spherical volume of 3 mm diameter approximately. The spatial coverage is around 1% of the brain and differs between patients because the implantation of electrodes is tailored for each case. Group studies thus need a large number of patients to reach a large spatial sampling, which can be achieved more easily using a multicentric approach such as implemented in our F-TRACT project (f-tract.eu). To facilitate group studies, we developed a software—IntrAnat Electrodes—that allows to perform virtual electrode implantation in patients’ neuroanatomy and to overlay results of epileptic and functional mapping, as well as resection masks from the surgery. IntrAnat Electrodes is based on a patient database providing multiple search criteria to highlight various group features. For each patient, the anatomical processing is based on a series of software publicly available. Imaging modalities (Positron Emission Tomography (PET), anatomical MRI pre-implantation, post-implantation and post-resection, functional MRI, diffusion MRI, Computed Tomography (CT) with electrodes) are coregistered. The 3D T1 pre-implantation MRI gray/white matter is segmented and spatially normalized to obtain a series of cortical parcels using different neuroanatomical atlases. On post-implantation images, the user can position 3D models of electrodes defined by their geometry. Each electrode contact is then labeled according to its position in the anatomical atlases, to the class of tissue (gray or white matter, cerebro-spinal fluid) and to its presence inside or outside the resection mask. Users can add more functionally informed labels on contact, such as clinical responses after electrical stimulation, cortico-cortical evoked potentials, gamma band activity during cognitive tasks or epileptogenicity. IntrAnat Electrodes software thus provides a means to visualize multimodal data. The contact labels allow to search for patients in the database according to multiple criteria representing almost all available data, which is to our knowledge unique in current SEEG software. IntrAnat Electrodes will be available in the forthcoming release of BrainVisa software and tutorials can be found on the F-TRACT webpage

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    Neural signature of the conscious processing of auditory regularities

    No full text
    Can conscious processing be inferred from neurophysiological measurements? Some models stipulate that the active maintenance of perceptual representations across time requires consciousness. Capitalizing on this assumption, we designed an auditory paradigm that evaluates cerebral responses to violations of temporal regularities that are either local in time or global across several seconds. Local violations led to an early response in auditory cortex, independent of attention or the presence of a concurrent visual task, whereas global violations led to a late and spatially distributed response that was only present when subjects were attentive and aware of the violations. We could detect the global effect in individual subjects using functional MRI and both scalp and intracerebral event-related potentials. Recordings from 8 noncommunicating patients with disorders of consciousness confirmed that only conscious individuals presented a global effect. Taken together these observations suggest that the presence of the global effect is a signature of conscious processing, although it can be absent in conscious subjects who are not aware of the global auditory regularities. This simple electrophysiological marker could thus serve as a useful clinical tool

    Academic Software Toolboxes for the Analysis of MEG Data

    No full text
    International audienceFree MEG and EEG data analysis software packages springing from academic research are now widely used in published work. These toolboxes and applications are typically developed by or in close contact with researchers addressing cognitive or clinical neuroscience questions. Thus they often contain the latest methodological developments from the research community. It is therefore vital to educate MEG researchers and make them aware of the new possibilities offered by these toolboxes. The aim of this paper is to illustrate the characteristics and advantages of the various toolboxes to users and developers alike. We present each toolbox with their key features and target audience

    Academic Software Toolboxes for the Analysis of MEG Data

    No full text
    International audienceFree MEG and EEG data analysis software packages springing from academic research are now widely used in published work. These toolboxes and applications are typically developed by or in close contact with researchers addressing cognitive or clinical neuroscience questions. Thus they often contain the latest methodological developments from the research community. It is therefore vital to educate MEG researchers and make them aware of the new possibilities offered by these toolboxes. The aim of this paper is to illustrate the characteristics and advantages of the various toolboxes to users and developers alike. We present each toolbox with their key features and target audience

    MEG-BIDS: an extension to the Brain Imaging Data Structure for magnetoencephalography

    Get PDF
    We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG provides direct measurement of brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS has provided a solution to structure the organization of magnetic resonance imaging (MRI) data, which nature and acquisition parameters are different. Despite the lack of standard data format for MEG, MEG-BIDS is a principled solution to store, organize and share the typically-large data volumes produced. It builds on BIDS for MRI, and therefore readily yields a multimodal data organization by construction. This is particularly valuable for the anatomical and functional registration of MEG source imaging with MRI. With MEG-BIDS and a growing range of software adopting the standard, the MEG community has a solution to minimize curation overheads, reduce data handling errors and optimize usage of computational resources for analytics. The standard also includes well-defined metadata, to facilitate future data harmonization and sharing efforts
    corecore