139 research outputs found
Recommended from our members
Developmental Bias in Cleavage-Stage Mouse Blastomeres
BACKGROUND: The cleavage-stage mouse embryo is composed of superficially equivalent blastomeres that will generate both the embryonic inner cell mass (ICM) and the supportive trophectoderm (TE). However, it remains unsettled whether the contribution of each blastomere to these two lineages can be accounted for by chance. Addressing the question of blastomere cell fate may be of practical importance, because preimplantation genetic diagnosis requires removal of blastomeres from the early human embryo. To determine whether blastomere allocation to the two earliest lineages is random, we developed and utilized a recombination-mediated, noninvasive combinatorial fluorescent labeling method for embryonic lineage tracing.
RESULTS: When we induced recombination at cleavage stages, we observed a statistically significant bias in the contribution of the resulting labeled clones to the trophectoderm or the inner cell mass in a subset of embryos. Surprisingly, we did not find a correlation between localization of clones in the embryonic and abembryonic hemispheres of the late blastocyst and their allocation to the TE and ICM, suggesting that TE-ICM bias arises separately from embryonic-abembryonic bias. Rainbow lineage tracing also allowed us to demonstrate that the bias observed in the blastocyst persists into postimplantation stages and therefore has relevance for subsequent development.
CONCLUSIONS: The Rainbow transgenic mice that we describe here have allowed us to detect lineage-dependent bias in early development. They should also enable assessment of the developmental equivalence of mammalian progenitor cells in a variety of tissues.Molecular and Cellular Biolog
Targeting DEC-205(-)DCIR2(+) dendritic cells promotes immunological tolerance in proteolipid protein-induced experimental autoimmune encephalomyelitis
Developmental bias in cleavage-stage mouse blastomeres
BACKGROUND: The cleavage-stage mouse embryo is composed of superficially equivalent blastomeres that will generate both the embryonic inner cell mass (ICM) and the supportive trophectoderm (TE). However, it remains unsettled whether the contribution of each blastomere to these two lineages can be accounted for by chance. Addressing the question of blastomere cell fate may be of practical importance, because preimplantation genetic diagnosis requires removal of blastomeres from the early human embryo. To determine whether blastomere allocation to the two earliest lineages is random, we developed and utilized a recombination-mediated, noninvasive combinatorial fluorescent labeling method for embryonic lineage tracing. RESULTS: When we induced recombination at cleavage stages, we observed a statistically significant bias in the contribution of the resulting labeled clones to the trophectoderm or the inner cell mass in a subset of embryos. Surprisingly, we did not find a correlation between localization of clones in the embryonic and abembryonic hemispheres of the late blastocyst and their allocation to the TE and ICM, suggesting that TE-ICM bias arises separately from embryonic-abembryonic bias. Rainbow lineage tracing also allowed us to demonstrate that the bias observed in the blastocyst persists into postimplantation stages and therefore has relevance for subsequent development. CONCLUSIONS: The Rainbow transgenic mice that we describe here have allowed us to detect lineage-dependent bias in early development. They should also enable assessment of the developmental equivalence of mammalian progenitor cells in a variety of tissues
Protein-coding gene promoters in Methanocaldococcus (Methanococcus) jannaschii
Although Methanocaldococcus (Methanococcus) jannaschii was the first archaeon to have its genome sequenced, little is known about the promoters of its protein-coding genes. To expand our knowledge, we have experimentally identified 131 promoters for 107 protein-coding genes in this genome by mapping their transcription start sites. Compared to previously identified promoters, more than half of which are from genes for stable RNAs, the protein-coding gene promoters are qualitatively similar in overall sequence pattern, but statistically different at several positions due to greater variation among their sequences. Relative binding affinity for general transcription factors was measured for 12 of these promoters by competition electrophoretic mobility shift assays. These promoters bind the factors less tightly than do most tRNA gene promoters. When a position weight matrix (PWM) was constructed from the protein gene promoters, factor binding affinities correlated with corresponding promoter PWM scores. We show that the PWM based on our data more accurately predicts promoters in the genome and transcription start sites than could be done with the previously available data. We also introduce a PWM logo, which visually displays the implications of observing a given base at a position in a sequence
Investigating the impact of electrical stimulation temporal distribution on cortical network responses
Rare variants and HLA haplotypes associated in patients with neuromyelitis optica spectrum disorders
Neuromyelitis optica spectrum disorders (NMOSD) are rare, debilitating autoimmune diseases of the central nervous system. Many NMOSD patients have antibodies to Aquaporin-4 (AQP4). Prior studies show associations of NMOSD with individual Human Leukocyte Antigen (HLA) alleles and with mutations in the complement pathway and potassium channels. HLA allele associations with NMOSD are inconsistent between populations, suggesting complex relationships between the identified alleles and risk of disease. We used a retrospective case-control approach to identify contributing genetic variants in patients who met the diagnostic criteria for NMOSD and their unaffected family members. Potentially deleterious variants identified in NMOSD patients were compared to members of their families who do not have the disease and to existing databases of human genetic variation. HLA sequences from patients from Belgrade, Serbia, were compared to the frequency of HLA haplotypes in the general population in Belgrade. We analyzed exome sequencing on 40 NMOSD patients and identified rare inherited variants in the complement pathway and potassium channel genes. Haplotype analysis further detected two haplotypes, HLA-A*01, B*08, DRB1*03 and HLA-A*01, B*08, C*07, DRB1*03, DQB1*02, which were more prevalent in NMOSD patients than in unaffected individuals. In silico modeling indicates that HLA molecules within these haplotypes are predicted to bind AQP4 at several sites, potentially contributing to the development of autoimmunity. Our results point to possible autoimmune and neurodegenerative mechanisms that cause NMOSD, and can be used to investigate potential NMOSD drug targets.Published versio
Differential regulation of H3S10 phosphorylation, mitosis progression and cell fate by Aurora Kinase B and C in mouse preimplantation embryos
Sticking to their Guns: The Missing RMA for Cybersecurity
Why has cybered conflict disrupted the security of the most developed nations? A foreign adversary contemplating an attack on a developed nation\u27s heartland certainly faces multiple state-run military-grade lines of defense on land, sea and air. A foreign adversary launching a direct cyber-attack on a non-military homeland target will meet none. Armed forces do not shield a society from cyber-attacks originated by foreign adversaries, no longer provide a buffer between the enemy and homeland, nor can they identify the attacker after an attack occurred.
Adversaries succeed in waging cybered conflict against the U.S. and its allies. Having repeatedly inflicted economic and social harm while evading retaliation, adversaries become brazen. To prevail in cybered conflict, we need to return to the very foundations of our defense.
However, profound defense adaptation is especially problematic for dominant militaries. To develop my argument, I turn to analyze a Stuxnet-like scenario using the Revolution in Military Affairs (RMA) concept of Security Studies and the paradigm shift concept of philosophy of science. Security Studies theory, philosophy of science and empirical evidence all suggest that profound defense adaptation demands pressure from outside the expert organization. I argue that Security Studies theory and empirical evidence, including Israel’s defense adaptation following short-range rocket threat, suggest that civilian outsiders coalescing with military partners can successfully drive defense adaptation.
To secure the Western world order, the U.S. and its allies need to rearrange their security forces, leveraging the experience accumulated through centuries
- …
