1,291 research outputs found
Recommended from our members
Recurrent Connectivity Can Account for the Dynamics of Disparity Processing in V1
Disparity tuning measured in the primary visual cortex (V1) is described well by the disparity energy model, but not all aspects of disparity tuning are fully explained by the model. Such deviations from the disparity energy model provide us with insight into how network interactions may play a role in disparity processing and help to solve the stereo correspondence problem. Here, we propose a neuronal circuit model with recurrent connections that provides a simple account of the observed deviations. The model is based on recurrent connections inferred from neurophysiological observations on spike timing correlations, and is in good accord with existing data on disparitytuning dynamics.Wefurther performedtwo additional experimentstotest predictions ofthe model. First, we increased the size of stimuli to drive more neurons and provide a stronger recurrent input. Our model predicted sharper disparity tuning for larger stimuli. Second, we displayed anticorrelated stereograms, where dots of opposite luminance polarity are matched between the left- and right-eye images and result in inverted disparity tuning in the disparity energy model. In this case, our model predicted reduced sharpening and strength of inverted disparity tuning. For both experiments, the dynamics of disparity tuning observed from the neurophysiological recordings in macaque V1 matched model simulation predictions. Overall, the results of this study support the notion that, whilethe disparity energy model provides a primary account of disparitytuning in V1 neurons, neural disparity processing in V1 neurons is refined by recurrent interactions among elements in the neural circuit
Designed to fail : a biopolitics of British Citizenship.
Tracing a route through the recent 'ugly history' of British citizenship, this article advances two central claims. Firstly, British citizenship has been designed to fail specific groups and populations. Failure, it argues, is a design principle of British citizenship, in the most active and violent sense of the verb to design: to mark out, to indicate, to designate. Secondly, British citizenship is a biopolitics - a field of techniques and practices (legal, social, moral) through which populations are controlled and fashioned. This article begins with the 1981 Nationality Act and the violent conflicts between the police and black communities in Brixton that accompanied the passage of the Act through the British parliament. Employing Michel Foucault's concept of state racism, it argues that the 1981 Nationality Act marked a pivotal moment in the design of British citizenship and has operated as the template for a glut of subsequent nationality legislation that has shaped who can achieve citizenship. The central argument is that the existence of populations of failed citizens within Britain is not an accident of flawed design, but is foundational to British citizenship. For many 'national minorities' the lived realities of biopolitical citizenship stand in stark contradistinction to contemporary governmental accounts of citizenship that stress community cohesion, political participation, social responsibility, rights and pride in shared national belonging
Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas – Characterization by multivariate analysis
Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100-700 ng g-1, as well as δ13C values of -32 to -29‰ and δ15N values of -11 to -3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4-6 aromatic rings) content and δ13C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain
Nearby quasar remnants and ultra-high energy cosmic rays
As recently suggested, nearby quasar remnants are plausible sites of
black-hole based compact dynamos that could be capable of accelerating
ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate
at the nuclei of nearby dead quasars, those in which the putative underlying
supermassive black holes are suitably spun-up. Based on galactic optical
luminosity, morphological type, and redshift, we have compiled a small sample
of nearby objects selected to be highly luminous, bulge-dominated galaxies,
likely quasar remnants. The sky coordinates of these galaxies were then
correlated with the arrival directions of cosmic rays detected at energies EeV. An apparently significant correlation appears in our data. This
correlation appears at closer angular scales than those expected when taking
into account the deflection caused by typically assumed IGM or galactic
magnetic fields over a charged particle trajectory. Possible scenarios
producing this effect are discussed, as is the astrophysics of the quasar
remnant candidates. We suggest that quasar remnants be also taken into account
in the forthcoming detailed search for correlations using data from the Auger
Observatory.Comment: 2 figures, 4 tables, 11 pages. Final version to appear in Physical
Review
Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}
In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR)
are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals
with various carrier concentrations, from underdope to overdope. Our crystals
show the highest T_c (33 K) and the smallest residual resistivity ever reported
for Bi-2201 at optimum doping. It is found that the temperature dependence of
the Hall angle obeys a power law T^n with n systematically decreasing with
increasing doping, which questions the universality of the Fermi-liquid-like
T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of
the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab}
shows a good T-linear behavior. The systematics of the MR indicates an
increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure
Magnetotransport in the Normal State of La1.85Sr0.15Cu(1-y)Zn(y)O4 Films
We have studied the magnetotransport properties in the normal state for a
series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with values of y, between 0 and
0.12. A variable degree of compressive or tensile strain results from the
lattice mismatch between the substrate and the film, and affects the transport
properties differently from the influence of the zinc impurities. In
particular, the orbital magnetoresistance (OMR) varies with y but is
strain-independent. The relations for the resistivity and the Hall angle and
the proportionality between the OMR and tan^2 theta are followed about 70 K. We
have been able to separate the strain and impurity effects by rewriting the
above relations, where each term is strain-independent and depends on y only.
We also find that changes in the lattice constants give rise to closely the
same fractional changes in other terms of the equation.The OMR is more strongly
supressed by the addition of impurities than tan^2 theta. We conclude that the
relaxation ratethat governs Hall effect is not the same as for the
magnetoresistance. We also suggest a correspondence between the transport
properties and the opening of the pseudogap at a temperature which changes when
the La-sr ratio changes, but does not change with the addition of the zinc
impurities
Black Holes from Cosmic Rays: Probes of Extra Dimensions and New Limits on TeV-Scale Gravity
If extra spacetime dimensions and low-scale gravity exist, black holes will
be produced in observable collisions of elementary particles. For the next
several years, ultra-high energy cosmic rays provide the most promising window
on this phenomenon. In particular, cosmic neutrinos can produce black holes
deep in the Earth's atmosphere, leading to quasi-horizontal giant air showers.
We determine the sensitivity of cosmic ray detectors to black hole production
and compare the results to other probes of extra dimensions. With n \ge 4 extra
dimensions, current bounds on deeply penetrating showers from AGASA already
provide the most stringent bound on low-scale gravity, requiring a fundamental
Planck scale M_D > 1.3 - 1.8 TeV. The Auger Observatory will probe M_D as large
as 4 TeV and may observe on the order of a hundred black holes in 5 years. We
also consider the implications of angular momentum and possible exponentially
suppressed parton cross sections; including these effects, large black hole
rates are still possible. Finally, we demonstrate that even if only a few black
hole events are observed, a standard model interpretation may be excluded by
comparison with Earth-skimming neutrino rates.Comment: 30 pages, 18 figures; v2: discussion of gravitational infall, AGASA
and Fly's Eye comparison added; v3: Earth-skimming results modified and
strengthened, published versio
- …
