726 research outputs found

    A compact high field magnet system for medical applications

    Get PDF
    High magnetic field gradients can be used for various medical applications including magnetically targeted drug delivery, magnetic cell separation and controlled local heating for the ablation of tumours. These processes involve the use of biocompatible magnetic nanoparticles directed to the area of interest by the use of a field gradient. The force on the nanoparticle is proportional to the field gradient product, so high fields are required for effective delivery. Bulk superconductors are an attractive solution for both drug delivery and the next generation of low cost magnetic resonance imaging magnets. In particular, MgB2 is seen as an attractive material due to its low cost, simple processing and relatively high transition temperature (∼39 K). This paper describes the development of a breadboard compact delivery system suitable for medical applications. This incorporates a cryogenic stage which utilises long life space-proven technology and state of the art ex-situ processed MgB 2 pellets.EP/P026427/1

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    Fretting wear behavior of duplex PEO/chameleon coating on Al alloy

    Get PDF
    Plasma electrolytic oxidation (PEO) is an attractive technology for improving resistance to wear, heat and corrosion of aluminum alloys. PEO results in a hard, well-adhered alumina ceramic coating with a morphology which is graded from a dense region near the substrate interface to a porous outer region. Such properties mean that PEO can be an ideal underlying layer for the application of solid lubricants which can be entrapped in outer pores and provide reservoirs for the tribological contact lubrication. This study investigates the fretting wear behavior and adaptive mechanisms for a PEO-produced alumina surface of about 11–12 GPa hardness with a top layer of an MoS2/Sb2O3/C chameleon solid lubricating coating, the composition of which was designed to self-adapt in variable humidity environments for friction and wear reduction. Coupons of AA 6082 alloy were coated by the PEO process and then were over-coated by a burnishing process with a MoS2/Sb2O3/C chameleon coating to prepare a duplex coating combination. The coated surfaces were investigated using nanoindenation, Raman spectroscopy and scanning electroscopy and were then subjected to fretting wear tests against steel and alumina balls with variable amplitude (0–100 μm) and loads (10–100 N) in both humid air and in dry nitrogen environment conditions. The tests demonstrated low friction coefficients, considerable reduction in critical amplitude for the stick-slip transition, and self-adaptive tribological behavior in cycled environment tests. Friction coefficients of the order of 0.10–0.15 in humid air and 0.06–0.09 in dry nitrogen were recorded and linked with the surface self-adjustment from graphite to MoS2 lubrication, respectively, which was confirmed by Raman spectroscopy. The studies demonstrate the effectiveness of the PEO/chameleon duplex coating system for the friction reduction of and fretting wear in the gross-slip regime, as well as significantly reducing the critical amplitude of stick-slip transition for fatigue wear mitigation

    Bio::Homology::InterologWalk - A Perl module to build putative protein-protein interaction networks through interolog mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interaction (PPI) data are widely used to generate network models that aim to describe the relationships between proteins in biological systems. The fidelity and completeness of such networks is primarily limited by the paucity of protein interaction information and by the restriction of most of these data to just a few widely studied experimental organisms. In order to extend the utility of existing PPIs, computational methods can be used that exploit functional conservation between orthologous proteins across taxa to predict putative PPIs or 'interologs'. To date most interolog prediction efforts have been restricted to specific biological domains with fixed underlying data sources and there are no software tools available that provide a generalised framework for 'on-the-fly' interolog prediction.</p> <p>Results</p> <p>We introduce <monospace>Bio::Homology::InterologWalk</monospace>, a Perl module to retrieve, prioritise and visualise putative protein-protein interactions through an orthology-walk method. The module uses orthology and experimental interaction data to generate putative PPIs and optionally collates meta-data into an Interaction Prioritisation Index that can be used to help prioritise interologs for further analysis. We show the application of our interolog prediction method to the genomic interactome of the fruit fly, <it>Drosophila melanogaster</it>. We analyse the resulting interaction networks and show that the method proposes new interactome members and interactions that are candidates for future experimental investigation.</p> <p>Conclusions</p> <p>Our interolog prediction tool employs the Ensembl Perl API and PSICQUIC enabled protein interaction data sources to generate up to date interologs 'on-the-fly'. This represents a significant advance on previous methods for interolog prediction as it allows the use of the latest orthology and protein interaction data for all of the genomes in Ensembl. The module outputs simple text files, making it easy to customise the results by post-processing, allowing the putative PPI datasets to be easily integrated into existing analysis workflows. The <monospace>Bio::Homology::InterologWalk</monospace> module, sample scripts and full documentation are freely available from the Comprehensive Perl Archive Network (CPAN) under the GNU Public license.</p

    Gene set analysis exploiting the topology of a pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, a great effort in microarray data analysis is directed towards the study of the so-called gene sets. A gene set is defined by genes that are, somehow, functionally related. For example, genes appearing in a known biological pathway naturally define a gene set. The gene sets are usually identified from a priori biological knowledge. Nowadays, many bioinformatics resources store such kind of knowledge (see, for example, the Kyoto Encyclopedia of Genes and Genomes, among others). Although pathways maps carry important information about the structure of correlation among genes that should not be neglected, the currently available multivariate methods for gene set analysis do not fully exploit it.</p> <p>Results</p> <p>We propose a novel gene set analysis specifically designed for gene sets defined by pathways. Such analysis, based on graphical models, explicitly incorporates the dependence structure among genes highlighted by the topology of pathways. The analysis is designed to be used for overall surveillance of changes in a pathway in different experimental conditions. In fact, under different circumstances, not only the expression of the genes in a pathway, but also the strength of their relations may change. The methods resulting from the proposal allow both to test for variations in the strength of the links, and to properly account for heteroschedasticity in the usual tests for differential expression.</p> <p>Conclusions</p> <p>The use of graphical models allows a deeper look at the components of the pathway that can be tested separately and compared marginally. In this way it is possible to test single components of the pathway and highlight only those involved in its deregulation.</p

    Nine weeks of supplementation with a multi-nutrient product augments gains in lean mass, strength, and muscular performance in resistance trained men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to compare the effects of supplementation with Gaspari Nutrition's SOmaxP Maximum Performance™ (SOmaxP) versus a comparator product (CP) containing an equal amount of creatine (4 g), carbohydrate (39 g maltodextrin), and protein (7 g whey protein hydrolysate) on muscular strength, muscular endurance, and body composition during nine weeks of intense resistance training.</p> <p>Methods</p> <p>Using a prospective, randomized, double-blind design, 20 healthy men (mean ± SD age, height, weight, % body fat: 22.9 ± 2.6 y, 178.4 ± 5.7 cm, 80.5 ± 6.6 kg, 16.6 ± 4.0%) were matched for age, body weight, resistance training history, bench press strength, bench press endurance, and percent body fat and then randomly assigned via the ABBA procedure to ingest 1/2 scoop (dissolved in 15 oz water) of SOmaxP or CP prior to, and another 1/2 scoop (dissolved in 15 oz water) during resistance exercise. Body composition (DEXA), muscular performance (1-RM bench press and repetitions to failure [RTF: 3 sets × baseline body weight, 60-sec rest between sets]), and clinical blood chemistries were measured at baseline and after nine weeks of supplementation and training. Subjects were required to maintain their normal dietary habits and follow a specific, progressive overload resistance training program (4-days/wk, upper body/lower body split) during the study. An intent-to-treat approach was used and data were analyzed via ANCOVA using baseline values as the covariate. Statistical significance was set <it>a priori </it>at p ≤ 0.05.</p> <p>Results</p> <p>When adjusted for initial differences, significant between group post-test means were noted in: 1-RM bench press (SOmaxP: 133.3 ± 1.3 kg [19.8% increase] vs. CP: 128.5 ± 1.3 kg [15.3% increase]; p < 0.019); lean mass (SOmaxP: 64.1 ± 0.4 kg [2.4% increase] vs. 62.8 ± 0.4 kg [0.27% increase], p < 0.049); RTF (SOmaxP: 33.3 ± 1.1 reps [44.8% increase] vs. 27.8 ± 1.1 reps [20.9% increase], p < 0.004); and fat mass (SOmaxP: 12.06 ± 0.53 kg [9.8% decrease] vs. 13.90 ± 0.53 kg [4.1% increase], p < 0.024). No statistically significant differences in vital signs (heart rate, systolic and diastolic blood pressures) or clinical blood chemistries were noted.</p> <p>Conclusions</p> <p>These data indicate that compared to CP, SOmaxP administration augments and increases gains in lean mass, bench press strength, and muscular performance during nine weeks of intense resistance training. Studies designed to confirm these results and clarify the molecular mechanisms by which SOmaxP exerts the observed salutary effects have begun. Both SOmaxP and the CP were well-tolerated, and no supplement safety issues were identified.</p

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Subduction controls the distribution and fragmentation of Earth’s tectonic plates

    Get PDF
    International audienceThe theory of plate tectonics describes how the surface of the Earth is split into an organized jigsaw of seven large plates 1 of similar sizes and a population of smaller plates, whose areas follow a fractal distribution 2,3. The reconstruction of global tectonics during the past 200 My 4 suggests that this layout is probably a long-term feature of our planet, but the forces governing it are unknown. Previous studies 3,5,6 , primarily based on statistical properties of plate distributions, were unable to resolve how the size of plates is determined by lithosphere properties and/or underlying mantle convection. Here, we demonstrate that the plate layout of the Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using 3D spherical models of mantle convection with plate-like behaviour that match the plate size-frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between slabs controls the layout of large plates, and the stresses caused by the bending of trenches, break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates 7,8 reflects the dramatic changes in plate motions during times of major reorganizations. Our study opens the way to use convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected
    corecore