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Abstract

DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code
between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem.
Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein
interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the
method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-
DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial
energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually
favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some
similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein
binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously
established methods, which are based on sophisticated machine-learning techniques. We further apply our method to
protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models
whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable
structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity
between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling
step in search of its specific DNA targets by a DNA-binding protein.
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Introduction

DNA-binding proteins play an essential role in many funda-

mental biological activities, including DNA transcription, replica-

tion, packaging, repair and rearrangement. Interactions relevant

to these activities typically involve specific binding sites on both

proteins and DNA. Over the past several decades, many efforts

have been made in order to understand basic principles that

determine the specific DNA-protein interactions. It is well-known

that there does not exist a simple recognition code between protein

amino acids and DNA base pairs [1–4]. This poses a great

challenge for the prediction of DNA-protein interactions.

The daunting task of elucidating DNA-protein interactions can

be addressed with the assistance of computational modeling.

Methods for docking the complex from separated protein/DNA

structures have been developed [5–7]. As an early example, the

Monte Carlo program MONTY has been applied to sample

configurations of a single DNA-protein complex in the vicinity of

its native state [6]. The development of an efficient geometric

recognition algorithm [8], which allows a global search for optimal

surface complementarity though rigid body rotation and transla-

tion, greatly advanced the molecular docking field. An implemen-

tation of the algorithm, FTDOCK, was applied to DNA-protein

docking [5], with encouraging benchmark results reported on

modeling eight DNA/repressor complexes starting from unbound

protein structures and canonical B-DNA. A more recent

approach, HADDOCK, starts with a similar rigid body docking

procedure, followed by semi-flexible refinement [7]. Excellent

docking models were obtained for three examples by HAD-

DOCK.

The docking methods assume the availability of both protein

and DNA structures. Given only the structure of a DNA-binding

protein, it is of interest to determine the DNA-binding protein

residues without the knowledge of the associated specific DNA

sequence and structure with which the protein interacts. In the last

few years, several methods have been developed to address this

problem [9–15]. Most focus on analyzing characteristic patterns of

DNA-binding residues from the solved structures of complexes.

Standard machine-learning techniques, such as Support Vector

Machine [10,13] and neural networks [9,14], have been adopted

to differentiate DNA-binding residues from non-DNA-binding

residues, using features like sequence composition, evolutionary

profile, solvent accessibility, and electrostatic potential. Recently, a

knowledge-based method DBD-Hunter that combines structural

comparison and evaluation of a statistical pair potential was

proposed for predicting DNA-binding proteins and associated

binding residues [11]. The method yields an accuracy of 87% on

DNA-binding site prediction in comprehensive benchmarks.

However, the method is limited by the availability of appropriate

DNA-protein complex structures to be used as templates.
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In this study, we present a novel approach for predicting the

protein residues that bind DNA and DNA-protein interaction

modes, given the structure of a DNA-binding protein as the input.

We systematically docked 44 specific DNA-binding proteins in

both holo (DNA-bound) and apo (DNA-free) forms to a

nonspecific canonical B-DNA molecule. Using energy evaluation

and model clustering, we obtained representative complex models

that provide structural insights into how DNA-binding proteins

interact with a nonspecific DNA sequence. For about 80% of the

proteins, the sites for specific DNA recognition are among the

favorable interaction sites for nonspecific DNA binding. Further-

more, the interaction modes observed in the top ranked,

nonspecific DNA-protein encounter complexes bear a certain

similarity to the specific DNA-protein binding mode in the

experimental structure. The biological implications of this

similarity are discussed. Moreover, we demonstrate that our

approach achieves better performance than three established

methods based on machine-learning techniques. In addition to

experimental structures, we show that our method can be applied

to predicted protein models, generated by the state-of-the-art

modeling program TASSER [16]. Satisfactory results were

obtained for protein models with a root-mean square deviation,

RMSD, #5 Å of their Ca atoms from their native holo-structures.

We also show that our method can be further improved by

considering conformational changes of DNA.

Results

DNA-Binding Site
The apo- and holo-structures of 44 non-redundant specific

DNA-binding proteins (Table S1) are docked separately to a

nonspecific B-DNA composed of 16 dA?dT base pairs, following

the modeling procedure illustrated in Figure 1A. For each

structure, we keep the top 2500 docking complex models ranked

by their DNA-protein interfacial energy. We first compare DNA-

interacting protein residues observed in top ranked encounter

complexes with those observed in the native (experimental)

complex structures. For this purpose, the Matthews Correlation

Coefficient (MCC) is used to quantify the similarity between

interaction sites for specific and nonspecific DNA on the protein’s

surface. A complex model is considered near-native if the

associated MCC is higher than 0.5, which is the mid-point

between perfect overlap (MCC = 1.0) and a random model

(MCC = 0.0). As a representative example, Figure 1B and 1C

show the energy and MCC for the top 2500 docked structures of

Epstein-Barr nuclear antigen-1, whose top energy ranked model is

a near-native model with a high MCC of 0.76.

Analysis of docking solutions suggests that specific DNA-binding

sites on proteins are typically among the energetically favorable

sites for sampling the nonspecific DNA. As shown in Figure 2, the

MCC between specific and nonspecific DNA-binding sites is anti-

correlated with the DNA-protein interfacial energy. A represen-

tative example is provided for the Epstein-Barr nuclear antigen-1,

which has a Pearson Correlation Coefficient (PCC) of 20.46

between MCC and the interfacial energy (Figure 2A). On average,

the PCCs are 20.40/20.43 for the APO/HOLO sets, respec-

tively (Figure 2B). Although the correlation is not very strong, the

analysis does indicate that the specific DNA-binding sites on the

protein are more likely involved in forming encounter complexes

with a nonspecific DNA, as compared to the other regions of the

protein. These nonspecific encounter complexes provide a

structural basis for understanding the process known as facilitated

diffusion [17,18], during which a DNA-binding protein diffuses

along nonspecific DNA in search of its specific DNA target

sequence (see Discussion). For the purpose of sampling DNA

Figure 1. Methodology overview. (A) Flowchart of the DNA-protein
complex modeling process. (B–C) An example, Epstein-Barr nuclear
antigen-1, illustrates that specific-DNA recognition sites on a DNA-
binding protein are energetically favorable interaction sites for
nonspecific DNA. A nonspecific DNA (cyan) composed of 16 dA?dT
base pairs was docked to the protein structure (green), which is
complexed with a specific DNA molecule (purple) in the native structure
(Protein Data Bank (PDB) code 1b3t). Each point represents one of top
2500 energy-ranked docking models. They are placed at the center of
mass (COM) of the interfacial protein residues for a given docked pose,
and are color scaled according to (B) energy values and (C) Matthews
correlation coefficients. The spheres mark the location of the COM of
DNA-interaction sites for the top model (red) and the native structure
(orange).
doi:10.1371/journal.pcbi.1000341.g001

Author Summary

Many essential biological activities require interactions
between DNA and proteins. These proteins usually use
certain amino acids, called DNA-binding sites, to recognize
their specific DNA targets. To facilitate the search of its
specific DNA targets, a DNA-binding protein often
associates with nonspecific DNA and then diffuses along
the DNA. Due to the weak interactions between nonspe-
cific DNA and the protein, structural characterization of
nonspecific DNA–protein complexes is experimentally
challenging. This paper describes a computational model-
ing study on nonspecific DNA–protein complexes and
comparative analysis with respect to specific DNA–protein
complexes. The study found that the specific DNA-binding
sites on a protein are typically favorable for nonspecific
DNA and that nonspecific and specific DNA–protein
interaction modes are quite similar. This similarity may
reflect an important sampling step in the search for the
specific DNA target sequence by a DNA-binding protein.
On the basis of these observations, a novel method was
proposed for predicting DNA-binding sites and binding
modes of a DNA-binding protein without knowing its
specific DNA target sequence. Ultimately, the combination
of this method and protein structure prediction may lead
the way to high throughput modeling of DNA–protein
interactions.

DNA-Protein Interaction
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sequence, the DNA-binding sites on the protein surface are

energetically favorable to both specific and nonspecific DNA,

resulting in the observed overlap between these sites.

One can utilize this observation to predict specific DNA-binding

sites on protein through analyzing nonspecific DNA-protein

docking solutions. Figure 3A and 3B show the number of proteins

Figure 2. Correlation between MCC and DNA-protein interfacial energy. (A) A representative MCC versus energy plot shows the top 2500
docking solutions of Epstein-Barr nuclear antigen-1, as shown in Figure 1B and 1C. The correlation between MCC and energy was measured by
Pearson correlation coefficient. (B) The histograms of PCCs of DNA-binding proteins from APO/HOLO sets.
doi:10.1371/journal.pcbi.1000341.g002

Figure 3. Specific DNA-binding sites versus nonspecific DNA-interacting sites observed in complex models. Models were built with apo
(blue) and holo (red) protein structures. (A,B) Histograms of structures with at least one near-native model at different ranks. The models were ranked
according to their interfacial energy or shape complementarity score. (C,D). Each box plot represents the MCCs of DNA-binding protein residue
prediction in the APO/HOLO sets. The MCCs were calculated based on models selected from 2500 docking solutions under seven different model
selection schemes. The lower, middle and upper quartiles of each box are the 25th, 50th, and 75th percentile; whiskers extend to a distance of up to
1.5 times the interquartile range. Outliers and means are represented by circles and squares, respectively. SC, EN, and CL denote ranking schemes
using shape complementarity, energy, and clustering. Top1 and Top5 designate the top model and the best of top five models, respectively. The
same notation is adopted throughout this paper.
doi:10.1371/journal.pcbi.1000341.g003
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with at least one near-native complex model under various rank

thresholds. According to the DNA-protein interfacial energy, we

obtained a near-native top one model for 17 (39%) and 23 (52%)

proteins, using apo and holo protein structures for docking,

respectively. By comparison, shape complementarity ranking

merely provides 2 (5%) and 9 (20%) proteins with a near-native

top one ranked model based on apo- and holo-structures. Among

the top ten energy ranked models, one can find at least one near-

native model for 34 (77%) and 37 (84%) proteins from the APO

and HOLO sets, while only 12 (27%) and 30 (68%) proteins from

the same sets have a near-native model on the top ten list based on

shape complementarity ranking.

To further improve model selection, we introduced a clustering

procedure and compared various model selection schemes shown

in Figure 3C and 3D. As expected, a randomly chosen model from

the 2500 docking solutions gives a mean MCC very close to zero,

0.005/0.036 on the APO/HOLO sets, respectively. The mean

MCC values of the top one shape complementarity ranked

models, 0.06/0.11 on APO/HOLO sets, are slightly better than

the means of random models. A significant jump to a mean MCC

of 0.39/0.44 (APO/HOLO) is seen by selecting the top one

energy ranked model, EN1, and these increase to 0.51/0.59 using

the best of top five energy-ranked models, EN5. Clustering further

improves model selection, with the best of top five clustering

representative models, CL top5, yielding mean MCCs of 0.54/

0.62, accuracies of 87%/89%, sensitivities of 57%/62%, specific-

ities of 94%/95%, and precisions of 69%/77%, for the APO/

HOLO sets (see Table 1). Interestingly, the top ranked cluster

model, CL top1, has a MCC of 0.40/0.44, which is only slightly

better than the EN1 model.

Our method can readily take advantage of known information

about DNA-binding sites, such as data collected from mutagenesis

studies, NMR experiments, or sequence conservation analysis.

The information can be used to derive contact restraints for model

filtration [5,7]. To illustrate this point, we randomly picked native

DNA-binding protein residues and filtered all models in which

these residues do not contact DNA. When applying more than one

such restraint, we obtained significantly better top one models

(Figure 4). The mean MCC values for the CL top1 models of apo-

structures, for example, systematically increases from 0.40 without

any restraint, to 0.45, 0.52, and 0.59 with two, three, and five

restraints, respectively.

DNA–Protein Interaction Mode
Next, we compare interaction modes between representative

nonspecific DNA-protein encounter complexes and the native

(experimental) specific DNA-protein complexes. For this compar-

ison, we need a mapping between the nonspecific DNA and the

specific DNA complexed with the protein in the native structure.

The mapping was obtained by gaplessly threading the nonspecific

DNA along the native DNA with a scoring function that

maximizes the overlap of the DNA-protein residue contacts.

Then, the native DNA-protein contacts observed in the model

were counted, and the RMSD of native interfacial residues relative

to their positions in the model was calculated by optimally

superposing these interfacial residues. For each protein, the best

result of top five clustering models is shown in Figure 5A. In these

models, the optimal alignment typically covers 85% of the length

of the shorter DNA, and more than 95% of the native interfacial

residues. On average, the fractions of native contacts (denoted as

Table 1. DNA-binding site prediction benchmarks.

Model MCC* Accuracy* Sensitivity* Specificity* Precision*

APO CL Top1 0.4060.20 0.8360.07 0.4660.18 0.9160.05 0.5560.20

HOLO CL Top1 0.4460.30 0.8460.09 0.5060.26 0.9260.06 0.5960.29

APO CL Top5 0.5460.13 0.8760.05 0.5760.13 0.9460.04 0.6960.17

HOLO CL Top5 0.6260.13 0.8960.05 0.6260.15 0.9560.04 0.7760.15

*Means and standard deviations are shown for predictions on the APO/HOLO sets.
doi:10.1371/journal.pcbi.1000341.t001

Figure 4. MCC of the Top1 clustering model versus number of geometric restraints applied for model filtration. In each case, up to five
native DNA-binding residues were randomly selected as the restraint(s). Models in which the DNA does not contact these restraint residues were
discarded, and the remaining models were subjected to clustering. Five independent trials were performed per restraint number per protein.
Modeling was performed for both (A) APO and (B) HOLO sets.
doi:10.1371/journal.pcbi.1000341.g004
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Fnat) observed in the model are 33%/41% for the APO/HOLO

sets, respectively, and the corresponding DNA-protein interfacial

RMSDs (denoted as RMSDint) are 4.6/3.4 Å. The results indicate

some resemblance between nonspecific DNA-protein interaction

modes and the specific-DNA-protein binding mode, though

consistent specific base recognition cannot be expected due to the

different DNA sequence employed and the possible conformational

changes involved. About 70% of contacts involving specific base

recognition in the specific complex are either lost or converted to

backbone contacts in the corresponding nonspecific contacts.

From the prediction prospective, we may define a DNA-protein

complex model as acceptable if the model satisfies one of the

following two conditions: (i) Fnat$30%, or (ii) Fnat$10% and

RMSDint#4 Å, the criteria adopted from the Critical Assessment

of PRedicted Interactions (CAPRI) [19]. Using these criteria, the

predicted DNA-binding modes for 71%/86% of APO/HOLO

proteins can be classified as acceptable, resulting in a mean

RMSDint of 3.9/3.1 Å and a mean Fnat of 37%/44%.

Three examples of predicted nonspecific DNA-protein complex

models based on apo-structures are compared with the corre-

sponding native specific DNA-protein complex structures in

Figure 5B–D. The Antennapedia homeodomain from a Drosophila

melanogaster transcription factor represents a classic DNA-binding

domain that recognizes DNA through a helix-turn-helix motif

[20,21]. Using an apo protein structure [20], the best clustering

model contains 14 DNA-interacting protein residues; all are

among the 19 DNA-binding residues bound to the specific DNA

sequence. The native-like binding mode of the predicted model is

reflected by a RMSDint of 1.9 Å and a Fnat of 54% (Figure 5B).

The model, promoted from the sixth place on the energy ranking

list to the second place through clustering, is the closest to the

native structure among all 2500 docking solutions.

The second example from Saccharomyces cerevisiae Ndt80 is a

DNA-binding domain belonging to the immunoglobulin-fold

family of transcription factors [22,23] (Figure 5C). The native

DNA-protein interface exhibits a unique binding mode involving

Figure 5. Native-likeness of predicted DNA-protein interaction modes. (A) RMSD of native DNA-protein interfacial residues versus the
fraction of the native DNA-protein contacts observed in the model. The results of the best of the top five models are shown. The models are based on
apo (blue circles) and holo (red square) protein structures, respectively. (B–D) Three examples illustrate the resemblance between the nonspecific
DNA-protein complex model and the specific DNA-protein complex. All models are based on apo-structures. In each case, the model was superposed
onto the native complex structure by optimally aligning the protein-DNA interfacial residues, colored in blue and red for the model and native
protein structures, respectively. The transparent grey cartoons represent non-interfacial protein residues of the model. The nonspecific (dA?dT)16 B-
DNA used for docking and the specific DNA fragment co-crystallized with the protein are colored in cyan and purple, respectively. In panel D, a non-
cognate DNA from a third crystal structure is shown in brown. The DNA is placed such that the protein (PDB code 2revA, not shown) co-crystallized
with the DNA is optimally aligned with its cognate native form. For clarity, only backbones are shown for the three DNAs in panel D. The PDB code
includes the four-digit access code (lower case) and the chain identifier (upper case) of the protein. Graphic images were made with the program
VMD [47].
doi:10.1371/journal.pcbi.1000341.g005
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mainly loop residues. The top energy-ranked model correlates well

with the native structure, having a MCC of 0.71, which is only

slightly lower than the best value of 0.72 found among all docking

solutions. The interfacial RMSD of 3.0 Å and Fnat of 55% suggest

close similarity between the predicted and native binding mode.

The third example is a type II restriction endonuclease, EcoRV

(Figure 5D), whose structures have been solved in DNA-free [24]

and DNA-bound forms with either a cognate or a non-cognate

DNA sequence [24,25]. In the top energy-ranked model obtained

with the unbound structure, residues involving DNA-protein

interactions include about half of the protein residues contacting

the cognate sequence in the experimental structure, yielding a

moderate MCC of 0.51. The result is expected since the cognate

DNA significantly deviates from the canonical B-DNA form by a

bending angle of ,50u, as shown in the native complex structure.

As a result, the nonspecific DNA can only be partially aligned to

the cognate DNA. In fact, the interaction mode presented by our

model more closely resembles the binding mode of the non-

cognate DNA-protein complex structure (Figure 5D). All ten

DNA-binding residues involving non-cognate DNA recognition

are predicted as DNA-binding according to our model. Note that

EcoRV functions as a homodimer, and only the monomer was

employed for docking.

Application to Predicted Protein Models
Our approach was further validated on predicted protein

models. First, the sequences of these 44 DNA-binding proteins

were input into the threading algorithm PROSPECTOR_3.0

[26]. Depending on the confidence levels of the structural

templates identified, proteins were classified into two groups: 30

Easy targets, which typically have good quality templates, and 14

Hard targets, which usually do not have a reliable template hit.

Note that we excluded from the template library any structure

that shares.30% global sequence identity with a given target.

The best template, ranked by the TM-score structural similarity

metric [27], has a mean RMSD of 7.9 Å with respect to the

native holo-structure over about 92% alignment coverage, and

the mean sequence identity of these templates is 19%. After

TASSER runs for model assembly and refinement [16], the

mean RMSDs of the top TASSER model and of the best of top

five models were improved to 6.9 Å and 6.4 Å over the regions

aligned with the templates. Overall, the mean TM-scores of the

top and the best of five top models compared against the native

holo structure are 0.61 and 0.63; the latter is ,9% higher than

the average TM-score of the best threading templates.

Systematic model improvement over the best templates is

evident, as an improved structural model was obtained in 37

of 44 cases.

For reach protein, the top TASSER model was employed for

docking and subsequent analysis. The number of proteins whose

top TASSER model has a RMSD#5.0 Å from the native holo-

structures is 24 (55%); all but one are from the easy set (Figure 6A).

Among these 24 proteins, the best of top five DNA-protein

complex models yields an average MCC/accuracy of 0.51/84%

for DNA-binding site prediction. For the Easy/Hard sets, the best

of top five models gives mean MCC of 0.50/0.23, a RMSDint of

5.9/11.2 Å, and Fnat of 29%/16%, respectively (Figure 6B).

While we obtained acceptable binding mode predictions for 12

(40%) of the targets from the Easy set, the predicted binding mode

for Hard targets is generally incorrect, which is expected due to

poor protein model quality. Overall, the binding site and mode

predictions are satisfactory for the Easy set.

Figure 6. Prediction of DNA-protein binding interactions with TASSER models. (A) RMSD of the top TASSER model used for docking versus
the MCC of DNA-binding site prediction. (B) RMSD to native of the DNA-protein interfacial residues versus the fraction of the native DNA-protein
contacts observed in the model. (C) Example of a prediction with a TASSER model. The model (green) was superposed onto the native structure (red)
by optimally aligning the DNA-protein interface. Interfacial protein residues observed in the TASSER model and native complexes are shown in solid
colors, while non-interfacial protein residues are transparent. The nonspecific DNA used for docking and native DNA fragments co-crystallized with
the protein are shown in green and purple ribbon representations, respectively.
doi:10.1371/journal.pcbi.1000341.g006
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One example, the DNA-binding domain from an E. coli group

IV s factor, is illustrated in Figure 6C. The protein initiates

transcription by binding to a specific promoter region and

recruiting an RNA polymerase [28]. The closest template, an

Aquifex aeolicus group I s factor structure resolved in its DNA-free

form, shares a sequence identity of 24% with the target. The top

ranked TASSER model has an RMSD of 2.5 Å from the crystal

protein structure (Figure 6C). The high quality model permitted us

to build reliable docking complex models. The best of top five

docking models predicts 11 of 15 DNA-binding amino acids at

92% precision; and the predicted interaction mode closely mimics

the native binding mode exhibited by the crystal structure with an

interfacial RMSD of 2.5 Å and Fnat of 53%.

Comparison with Other DNA–Protein Pair Potentials
In addition to the DNA-protein energy function described

above, we also tested the performance of three other statistical pair

potentials proposed previously, including two quasichemical

potentials, one at the residue, QCRes [5] and two others at the

all-atom level, QCAA [29] and RAPDF [30] (see Methods). While

the residue-level quasichemical potential uses a single distance

cutoff of 4.5 Å, the all-atom potentials are distance dependent up

to 10 Å. Since in previous studies, the potentials were derived from

relatively small data sets, we re-parameterized these three

potentials with the same set of 179 crystal complex structures

used for our functional-group level quasichemical potential

derivation [11]. Then, for each target from the APO/HOLO

sets, the top 2500 docking solutions described above were re-

ranked according to the energies calculated with the new

potentials. Table 2 shows the results of binding site and mode

predictions for the best of the top five models. On average, our

energy function outperforms these three potentials. The mean

MCC for the binding site prediction is 0.59/0.51 for the APO/

HOLO sets using our energy function without clustering,

compared with 0.55/0.47, from both the residue and all-atom

quasichemical potentials, and 0.40/0.24 from the conditional

probability scoring function RAPDF. Correspondingly, our energy

function selected acceptable binding complex models in 77%/

59% of the cases, whereas the residue-based and the two all-atom

potentials selected acceptable models in 71%/50%, 71%/55%,

and 40%/32% of the cases, respectively. These results suggest that

detailed all-atom representations do not necessarily have an

advantage over simplified residue or functional-group level

potentials when applied to rank docking solutions from a non-

specific DNA sequence. We also note that the clustering models,

which have a mean MCC of 0.62/0.54, are significantly better

than models selected by the three potentials (Wilcoxon signed-rank

tests P,0.04).

Comparison with Other DNA-Binding Site Prediction
Methods

Our approach was compared with three established methods

[9,13,14] that predict DNA-binding sites based on protein

structures. Note that none of these three methods is capable of

predicting the DNA-protein interaction mode. For the purpose of

comparison, all calculations were carried out on the same set,

AS62 [9], composed of DNA-binding protein structures in their

holo-forms. As shown in Table 3, the top model from our

approach already yields better results than previous methods on

average. The mean MCC of our top model is 0.53, compared to

0.49 obtained independently by the Kuznetsov group [13] and by

Tjong and Zhou’s method named DISPLAR [14]. Moreover, the

best of our top five models significantly improves the DNA-

binding site prediction with a mean MCC of 0.62 and a mean

accuracy of 87%, leading the results from the Kuzentsov method

or DISPLAR by about one standard deviation unit. The latter two

methods perform better than that proposed by Ahmad et al. [9].

This reason can be partially attributed to the fact that the Ahmad

et al. did not use position-specific sequence profiles in their

method.

We further compared the performance of our method on apo

structures with DISPLAR. The predictions of DNA-binding sites

of 44 proteins structures from the APO set were performed using

the DISPLAR webserver. The averages of MCC/accuracy by

DISPLAR are 0.39/82.5%, which are slightly lower than 0.40/

82.7% from the results by the first ranked model of our method.

The difference is statistically insignificant. However, the perfor-

mance of the best of the top five models by our method, 0.54/

86.7%, is significantly better than that of DISPLAR (Wilcoxon

signed-rank test P,0.001). In practice, the multiple (but limited

number of) models generated by our method can be filtered

through incorporation of existing experimental studies on binding-

sites, thereby further improving the prediction.

Effects of Conformational Changes
The difference between the predicted docking model and the

native complex structure may be explained by two main reasons:

First, nonspecific instead of specific DNA was used for docking.

Second, rigid-body docking does not consider the conformational

changes of either the DNA or the protein. The effects of

conformational changes in protein are clear as holo-structures

consistently produce models closer to the native state than those

using apo-structures. In principle, by also taking DNA conforma-

tional changes into account, one should be able to obtain

improved models.

The flexibility problem can be partially addressed through

docking the protein to a library of DNA in various conformations

[7]. To explore this idea, we constructed a DNA library composed

of three poly dA?dT B-DNA structures, whose backbone RMSDs

range from 1 to 3 Å with respect to the canonical B-DNA used

above, and the canonical B-DNA itself (see Table S2). For

convenience, we name the canonical B-DNA as D0, and the DNA

library as Dlib. Using Dlib, we obtained complex models

Table 2. Comparison of DNA-protein pair potentials for
model selection.

Ranking Schemes* HOLO APO

MCC{ N{ MCC{ N{

CL 0.6260.13 38 (86%) 0.5460.13 31 (71%)

EN 0.5960.20 34 (77%) 0.5160.16 26 (59%)

QCRes
{ 0.5560.19 31 (71%) 0.4760.22 22 (50%)

QCAA
{ 0.5560.17 31 (71%) 0.4760.17 24 (55%)

RAPDF1 0.4060.37 21 (48%) 0.2460.30 14 (32%)

*CL and EN denote two scoring schemes using our DNA-protein interfacial
energy function with and without clustering, respectively. QCRes and QCAA

designate schemes using quasichemical pair potentials at the residue level
with a single distance cutoff and at the all-atom level with multiple distance
bins, respectively. The RAPDF scheme uses a scoring function proposed by
Robertson and Varani [30]. For each scheme, the results of the best of top five
ranked models are shown for the predictions on the APO/HOLO sets.
{Mean and standard deviation of MCC are shown for the binding site
predictions.
{The number (percentage) of proteins for which the predicted complex model
are acceptable according to the CAPRI criteria.

doi:10.1371/journal.pcbi.1000341.t002
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generated by docking the protein to each DNA in the library. For

each of the four protein-DNA combinations, the same docking

procedure described above was followed, and the top five

clustering models were selected and pooled together. From this

pool of twenty clustering models we selected top five models

according to their interfacial energy. As shown in Figure 7, the

mean MCCs of DNA-binding residues predictions are improved

from 0.54/0.62 (D0 docking) to 0.57/0.68 (Dlib docking) for the

APO/HOLO sets, respectively.

One can further estimate the upper limit of such improvement

by docking holo protein structures to nonspecific DNA that adopts

the native specific-DNA conformation, though in general one

cannot assume that the nonspecific DNA associates with the

protein in exactly the same conformation as the specific DNA. In

this estimation, we took the native DNA structures from the 44

complex structures and mutated all base pairs into dA?dT with the

program 3DNA [31]. We name this set of DNA structures Dnat.

Each protein structure from the HOLO set was then docked to the

corresponding DNA structure in Dnat. The resulting average

MCC for binding site prediction from the best of top five

clustering models is 0.71 (Figure 7), which is slightly higher than

0.68 from docking holo protein forms to Dlib. While we expect to

see further improvement with fully flexible docking, it poses a

challenging problem in practice [7,32]. So far, successful examples

are limited to local refinement, which requires that the initial rigid

body models subjected to flexible refinement are sufficiently close

to their native conformation. A thorough study on flexible

docking, however, is beyond the scope of the current study.

Discussion

How a DNA-binding protein locates its specific DNA target

sequence is a fundamental, unsolved problem in biology. It has

been proposed that association with nonspecific DNA sequences

and subsequent travel along the sequence facilitates the search for

the specific DNA target sequence [17,18]. In this regard, it has

been shown that specific DNA-binding proteins, such as

transcription factors and restriction endonucleases, can locate

target sites at rates several orders of magnitude faster than that

estimated by random three-dimensional diffusion, through mech-

anisms known collectively as facilitated diffusion [17,18]. A crucial

step of the facilitated diffusion processes involves the association of

the protein with a nonspecific DNA sequence; this is followed by

one-dimensional sliding along the DNA or hopping over short

distances to accelerate the search for a specific DNA target

sequence. Despite recent advances that provide visualizations of

protein sliding along DNA [33], the structural details of how a

DNA-binding protein associates with a nonspecific DNA remain

elusive, primarily due to weak interactions between nonspecific

DNA and the protein. Indeed, due to the fact that the interactions

are nonspecific, there exist only a few solved atomic structures for

nonspecific DNA-protein complexes [24,34]. Our study provides

useful structural insights into how a specific DNA-binding protein

interacts with a nonspecific DNA sequence during the facilitated

diffusion process. The similarity between the specific DNA-protein

interaction mode and nonspecific interaction modes may reflect an

important sampling step in search of its specific DNA targets by a

DNA-binding protein.

By systematically studying encounter complexes of 44 specific

DNA-binding proteins with a nonspecific DNA molecule, we

found that the vast majority of these DNA-binding proteins

favorably interact with nonspecific DNA at the same binding sites

for their specific DNA targets. Using APO/HOLO-structures for

docking and a pair potential for energy ranking, we obtained at

Figure 7. Improvement on DNA-binding site prediction using a
DNA library composed of poly dA?dT DNA in various
conformations. D0 denotes the canonical B-DNA described above.
Dlib denotes a library of four 16 bp dA?dT B-DNA structures, which are
shown in the cartoon representations. Dnat denotes the 44 native-like
poly dA?dT DNA structures, each of which was built by keeping the
original sugar-phosphate backbone of the native DNA structure from
the holo-form complex and mutating the specific base pairs into the
dA?dT base pair using the base step geometry parameters of the native
DNA. The results shown are from the best of top five clustering models.
doi:10.1371/journal.pcbi.1000341.g007

Table 3. Comparison of DNA-binding site prediction methods.

Method MCC* Accuracy* Sensitivity* Specificity* Precision*

CL Top1 0.5360.20 0.8560.07 0.5960.20 0.9360.05 0.6860.19

CL Top5 0.6260.14 0.8760.06 0.6660.16 0.9460.05 0.7560.15

Kuznetsov et al.{ 0.4960.17 0.7860.08 0.7960.15 0.7760.10 ( 0.43 )

Tjong and Zhou{ 0.4960.19 0.8160.09 0.6760.29 0.8360.13 0.5760.22

Ahmad et al.1 — 0.79 0.40 0.82 —

*Mean and standard deviation are shown for the predictions on the AS62 set, except as otherwise noted.
{Data taken from reference [13], except the mean precision shown in the parentheses. The mean precision, not given in the original reference, was estimated by using
the values of mean sensitivity and specificity, and a DNA-binding residue faction of 0.18.
{Predictions made by DISPLAR [14] web server at http://pipe.scs.fsu.edu/displar.html, and the measures were calculated as described in the Methods.
1Data taken from reference [9], where only the means were provided.
doi:10.1371/journal.pcbi.1000341.t003
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least one near-native model among the top ten models for 77%/

84% of APO/HOLO proteins. In these models, protein residues

that contact the nonspecific DNA coincide with those that contact

the specific DNA with a MCC.0.5. By introducing a clustering

procedure, the most native-like model among the top five cluster

representatives has an average MCC of 0.54/0.62 when APO/

HOLO structures are used. Moreover, the DNA-protein interac-

tion modes observed in these models resemble the corresponding

native binding modes with specific DNA. The average interfacial

RMSD is 4.6/3.4 Å, and the fraction of native contacts observed is

33%/41% for APO/HOLO proteins, respectively.

Our results therefore suggest that a DNA-binding protein

frequently samples nonspecific DNA using the same binding sites

as used for specific DNA recognition. The results are consistent

with a recent Langevin dynamics study on the diffusion of three

DNA-binding proteins along nonspecific DNA [35], and are also

consistent with the few available atomic structures of DNA-

binding proteins in complex with both specific and nonspecific

DNA [24,34]. One interesting example is the endonuclease

EcoRV, which locates a specific cleavage site through a

combination of 1D sliding along nonspecific sequence and 3D

jumping [36,37]. The nonspecific DNA recognition observed in

our top model and in a crystal structure of the nonspecific DNA-

EcoRV complex involves the same set of protein residues which

also participate in specific DNA recognition [24]. However, the

majority of native contacts formed in the cognate DNA-protein

complex structure are lost in our model, largely due to the absence

of the dramatic bending exhibited by the cognate DNA.

The overlap of nonspecific and specific DNA interaction sites on

the protein surface allows us to predict DNA-binding residues.

The best of top five models generated with holo-structures have an

average MCC of 0.62, which is 15% higher than the average

MCC of 0.54 obtained with apo-structures. Despite the notable

difference, the performance of our method is satisfactory for apo-

structures. This validation on apo-structures has important

practical applications. Going beyond the DNA-binding site

prediction, our method also provides models for the DNA-protein

interaction modes. For 86%/71% of HOLO/APO structures, at

least one of the top five models exhibits an interaction mode

somewhat similar to the native binding mode, with a mean

RMSDint of 3.1/3.9 Å and a Fnat of 44%/37%. These complex

models are acceptable using CAPRI criteria [19].

The performance of our method in DNA-binding site prediction

has been compared with three machine-learning based methods. We

note that the top model by our method already performs better than

the other methods in terms of MCC and overall accuracy. While

machine learning based methods typically provide only one model

for assessment, our method generates a limited number of

representative models for selection. This can be a great advantage

for practical application, since incorporation of existing experimental

studies on binding-sites may greatly improve model selection. On

average, the best of our top five models by our method achieves a

MCC of 0.62 and accuracy of 87%, which is significantly better than

the MCC of 0.49 and accuracy of 81% of DISPLAR [14], the best

among other methods. In addition, our method has the advantage of

predicting the binding mode, an ability that the machine-learning

methods lack. A downside of our method, however, is that it is

computationally more demanding than machine-learning methods,

typically requiring hours versus minutes of computation time for one

target. Nevertheless, given the widespread availability of computa-

tional resources, this is not a significant limitation.

Despite these successes, the method is not designed for

predicting the specific DNA sequence recognized by a DNA-

binding protein; this is a related, yet very challenging problem.

Knowledge-based distance-dependent contact potentials at the

residue [4] or the all-atom level [29,30,38], and physics-based all-

atom potentials [39,40], have been applied to predict DNA

specificity. While these studies have reported success on a few

cases, they are limited to known atomic complex structures or

models from closely related complex structures with almost

identical DNA-binding interface. Nevertheless, they suggest that

a successful approach must address structural flexibility and

cooperativity among partners that form a DNA-protein complex.

Another interesting question is whether one can use the current

approach to determine DNA-binding function given a protein

structure. To explore this issue, we applied the method to ,3,000

non-DNA-binding proteins collected previously [11]. Unfortu-

nately, we were not able to derive a practical interfacial energy

threshold to differentiate DNA-binding proteins from non-DNA-

binding proteins, despite the notable difference of average

interfacial energy. For DNA-binding function prediction, the

knowledge based approach DBD-Hunter [11], which requires that

the structure of a target protein be related to that of a known DNA

binding protein, seems more appropriate. Future efforts may

involve expanding the template library for DBD-Hunter by adding

complex structure models obtained from the current approach.

In the post-genomic era, the rapid progress of structural

genomics projects has greatly advanced our knowledge about

structural biology. Each year thousands of new protein structures

have been determined and deposited to the PDB. In principle, the

accumulation of protein structures enables a practical solution to

the folding problem through template based modeling [16]. Using

the well-established modeling method, TASSER, we have

obtained a top ranked protein model within 5 Å from their native

structures for over half of the 44 DNA-binding proteins. These

models were constructed and refined from homologous/analogues

templates with less than 30% sequence identity. We have

demonstrated that one can satisfactorily predict DNA-binding

sites using these good models. The average MCC and accuracy

are 0.51 and 84% for the best of top five complex models. This is

roughly comparable to the performance when experimentally

solved apo-structures are used. Ultimately, the combination of

modeling and DNA-protein docking may lead the way to the high

throughput prediction of DNA-protein interactions.

Methods

Data Sets
APO/HOLO sets. A total of 44 pairs of DNA-binding protein

structures determined both in the DNA-bound (HOLO) and

unbound (APO) forms were selected from a previous study [11]

using the following criteria: (i) the holo- and apo-structures

share.90% global sequence identity; (ii) the protein is bound to a

specific DNA molecule in the holo-form; (iii) the protein chain length

is less than 400 residues; and (iv) the DNA bound to protein has more

than 7 and less than 40 base pairs. These proteins include 29

transcription factors, 12 enzymes, and 3 other types of DNA-binding

proteins (Table S1). All share,35% global sequence identity among

each other.

AS62 set. For comparison to other DNA-binding site prediction

methods, we adopted a widely used set of 62 DNA-protein complex

structures [9]. To reduce redundancy, we followed Ref. [13] and

removed identical protein chains from these structures, resulting in

66 protein chains for the benchmark test.

Protein–DNA Complex Modeling
A flowchart of the modeling protocol is provided in Figure 1. In

the first step, a DNA-binding protein was docked to a

DNA-Protein Interaction
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poly(dA?dT)16 B-DNA with the FFT-based rigid-body docking

program FTDOCK [5]. A grid size of 0.7 Å, a rotation angle step

of 12u, and surface thickness of 1.2 Å were employed for docking.

The B-DNA structure was built with the program 3DNA [31],

using a canonical B-DNA fiber model. The top 10,000 docking

models ranked by the shape complementarity score were retained.

These models were subsequently filtered by the requirement that

the protein must contact at least one heavy atom from the two

central DNA base pairs. This helps to reduce the redundancy of

the models due to the helical symmetry of the DNA and also to

remove models in which the protein clashes with DNA termini.

The remaining complex models were re-ranked according to their

DNA-protein interfacial energy given by

E~EppzEBSA ð1Þ

where Epp is a statistical pair potential at the functional group

level [11], and EBSA is a surface burial term given by 20.02 kT/

Å2 6 Buried Surface Area (BSA). BSA was calculated with the

program NACCESS [41]. The statistical pair potential was

developed from an analysis in 179 DNA-protein complex

structures [11]. For each target, we derive a corresponding

potential by excluding any homologous protein with .35%

sequence identity from the 179 complex set and repeat the

analysis. The top 2500 energy-ranked models were retained for

clustering, which uses the coordinates of the COM of DNA-

binding protein residues. The clustering procedure starts by

selecting the top energy-ranked model as a clustering seed. All

models within a COM distance of 6 Å from the seed are assigned

to this cluster, and removed from subsequent clustering. We then

repeat this procedure until no model is left. Finally, the clusters

were ranked using the average energy of all members in each

cluster. From each cluster, we select the lowest energy model as

the representative model.

Model Assessment
A protein residue is assigned to be DNA-binding (or DNA-

interacting) if at least one heavy atom from the protein residue is

within 4.5 Å of at least one heavy atom from the DNA. Using this

definition, about 18% of protein residues can classified as true

DNA-binding in the analysis of the HOLO set. Given the

imbalanced nature of the DNA-binding residues and non-DNA-

binding residues, the Matthews correlation coefficient is a suitable

metric for assessing overlap or prediction of DNA-binding residues

between an encounter complex and the native complex. The

MCC is defined by [42]

MCC~ TP|TN{FP|FNð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFNð Þ TPzFPð Þ TNzFPð Þ TNzFNð Þ

p

where TP, FP, TN, and FN are true positives, false positives, true

negatives and false negatives, respectively. A true positive refers to

a DNA-binding protein residue observed in the native specific

complex. Other performance measures calculated are the

following:

Sensitivity~TP= TPzFNð Þ

Specificity~TN= TNzFPð Þ

Accuracy~ TPzTNð Þ= TPzFNzTNzFPð Þ

Precision~TP= TPzFPð Þ:

In the DNA-binding mode analysis, we mapped the nonspecific

DNA to the specific DNA by maximizing DNA-protein contact

overlap. A DNA-protein contact is defined at the residue level.

The RMSD between two structures was calculated using the

coordinates of backbone Ca and/or DNA C19 atoms. The

interfacial RMSD was calculated for interfacial protein/DNA

residues observed in the native specific-DNA-protein complex

structure.

Protein Structure Modeling
The structures of the 44 proteins from the APO/HOLO sets

were predicted following the TASSER methodology [16]. Briefly,

a target sequence was threaded against a non-redundant protein

structure library by the program PROSPECTOR_3 [26], and the

resulting structure templates are used for subsequent model

assembly and refinement by the program TASSER, which uses

a Monte Carlo replica exchange algorithm for sampling. Note that

we excluded any template that shares.30% global sequence

identity with the target. The replica trajectories were clustered and

representative models generated from these clusters. We built all-

atom protein models from the reduced-atom TASSER models

with the program PULCHRA [43]. In this study, the top ranked

TASSER model is employed for DNA-docking.

Statistical Pair Potentials
Four knowledge-based statistical DNA-protein pair potentials

were developed from an analysis of 179 non-redundant DNA-

protein complex crystal structures [11]. These include three

quasichemical potentials at the residue [5], functional-group

[11], and all-atom [29] levels, and another all-atom potential

(termed RAPDF, residue-specific all-atom conditional probabil-

ity discriminatory function) using a different reference state

[30]. RAPDF was originally derived using the Bayesian

probability formalism [30,44]; it can be expressed equivalently

under the Boltzmann distribution formalism. Here, we intro-

duce all these potentials using the Boltzmann formalism, which

assumes that the frequencies of observed pair interaction states

follow a Boltzmann distribution [45]. Consequently, the pair

interaction energy E can be deduced from the inverse of

Boltzmann’s law

E a, b, dð Þ~{kT ln
fobs a, b, dð Þ
fexp a, b, dð Þ ð2Þ

where a and b are protein/DNA residues, functional-group, or

heavy-atom types for the corresponding potentials, respectively,

and, fobs a, b, dð Þ and fexp a, b, dð Þ are the observed and

expected frequencies of the ab pair at the distance d,

respectively. For residue and functional-group level potentials,

the distance d is defined as the minimum distance between a

pair of heavy atoms from the corresponding the ab pair; and a

single distance cutoff of 4.5 Å was used. Multiple distance bins

from 3 Å to 10 Å with a bin width of 1 Å were employed for the

two all-atom potentials. The observed frequency can be

obtained by

fobs~
Nobs a, b, dð Þ
P

a, b

Nobs a, b, dð Þ ð3Þ

where Nobs a, b, dð Þ denotes the number of observed ab contact

pairs at the distance d. For quasichemical potentials, the

expected frequency is given by
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fexp~xaxb ð4Þ

where xa and xb are the mole fractions of type a and b. The

mole fraction for each type is the overall mole fraction in the

entire template library, following a scheme known as the

composition-independent scale [46]. For RAPDF, the expected

frequency is estimated by

fexp~

P

d

Nobs a, b, dð Þ
P

a, b, d

Nobs a, b, dð Þ ð5Þ

For a DNA-protein complex structure, the corresponding DNA-

protein interfacial energy is the summation of all observed pair

interactions in the structure.

The RAPDF parameterization was performed using the

program implemented previously [30]. In a benchmark test on

the DNA-protein docking decoy set compiled by Robertson and

Varani [30], our new set of RAPDF parameters yield an average

Z-score of 211.0 for the native complex structures, slightly better

than the previous average Z-score of 29.6 obtained by parameters

determined on a smaller set composed of 52 DNA-protein

complex structures.

Availability
A web-server implementation of the method described here is

available at http://cssb.biology.gatech.edu/skolnick/webservice/

DP-dock/.

Supporting Information

Table S1 List of the DNA-binding proteins in the APO/HOLO

sets

Found at: doi:10.1371/journal.pcbi.1000341.s001 (0.10 MB

DOC)

Table S2 List of four B-DNA structures used in the DNA

library

Found at: doi:10.1371/journal.pcbi.1000341.s002 (0.06 MB

DOC)
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