74 research outputs found

    Successful Targeting and Disruption of an Integrated Reporter Lentivirus Using the Engineered Homing Endonuclease Y2 I-AniI

    Get PDF
    Current antiviral therapy does not cure HIV-infected individuals because the virus establishes lifelong latent infection within long-lived memory T cells as integrated HIV proviral DNA. Here, we report a new therapeutic approach that aims to cure cells of latent HIV infection by rendering latent virus incapable of replication and pathogenesis via targeted cellular mutagenesis of essential viral genes. This is achieved by using a homing endonuclease to introduce DNA double-stranded breaks (dsb) within the integrated proviral DNA, which is followed by triggering of the cellular DNA damage response and error-prone repair. To evaluate this concept, we developed an in vitro culture model of viral latency, consisting of an integrated lentiviral vector with an easily evaluated reporter system to detect targeted mutagenesis events. Using this system, we demonstrate that homing endonucleases can efficiently and selectively target an integrated reporter lentivirus within the cellular genome, leading to mutation in the proviral DNA and loss of reporter gene expression. This new technology offers the possibility of selectively disabling integrated HIV provirus within latently infected cells

    Cost-effectiveness of a screening strategy for Q fever among pregnant women in risk areas: a clustered randomized controlled trial

    Get PDF
    Contains fulltext : 87399.pdf (publisher's version ) (Open Access)BACKGROUND: In The Netherlands the largest human Q fever outbreak ever reported in the literature is currently ongoing with more than 2300 notified cases in 2009. Pregnant women are particularly at risk as Q fever during pregnancy may cause maternal and obstetric complications. Since the majority of infected pregnant women are asymptomatic, a screening strategy might be of great value to reduce Q fever related complications. We designed a trial to assess the (cost-)effectiveness of a screening program for Q fever in pregnant women living in risks areas in The Netherlands. METHODS/DESIGN: We will conduct a clustered randomized controlled trial in which primary care midwife centres in Q fever risk areas are randomized to recruit pregnant women for either the control group or the intervention group. In both groups a blood sample is taken around 20 weeks postmenstrual age. In the intervention group, this sample is immediately analyzed by indirect immunofluorescence assay for detection of IgG and IgM antibodies using a sensitive cut-off level of 1:32. In case of an active Q fever infection, antibiotic treatment is recommended and serological follow up is performed. In the control group, serum is frozen for analysis after delivery. The primary endpoint is a maternal (chronic Q fever or reactivation) or obstetric complication (low birth weight, preterm delivery or fetal death) in Q fever positive women. Secondary aims pertain to the course of infection in pregnant women, diagnostic accuracy of laboratory tests used for screening, histo-pathological abnormalities of the placenta of Q fever positive women, side effects of therapy, and costs. The analysis will be according to the intention-to-screen principle, and cost-effectiveness analysis will be performed by comparing the direct and indirect costs between the intervention and control group. DISCUSSION: With this study we aim to provide insight into the balance of risks of undetected and detected Q fever during pregnancy. TRIAL REGISTRATION: ClinicalTrials.gov, protocol record NL30340.042.09

    Modeling Inhomogeneous DNA Replication Kinetics

    Get PDF
    In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited

    Disturbance Alters the Phylogenetic Composition and Structure of Plant Communities in an Old Field System

    Get PDF
    The changes in phylogenetic composition and structure of communities during succession following disturbance can give us insights into the forces that are shaping communities over time. In abandoned agricultural fields, community composition changes rapidly when a field is plowed, and is thought to reflect a relaxation of competition due to the elimination of dominant species which take time to re-establish. Competition can drive phylogenetic overdispersion, due to phylogenetic conservation of ‘niche’ traits that allow species to partition resources. Therefore, undisturbed old field communities should exhibit higher phylogenetic dispersion than recently disturbed systems, which should be relatively ‘clustered’ with respect to phylogenetic relationships. Several measures of phylogenetic structure between plant communities were measured in recently plowed areas and nearby ‘undisturbed’ sites. There was no difference in the absolute values of these measures between disturbed and ‘undisturbed’ sites. However, there was a difference in the ‘expected’ phylogenetic structure between habitats, leading to significantly lower than expected phylogenetic diversity in disturbed plots, and no difference from random expectation in ‘undisturbed’ plots. This suggests that plant species characteristic of each habitat are fairly evenly distributed on the shared species pool phylogeny, but that once the initial sorting of species into the two habitat types has occurred, the processes operating on them affect each habitat differently. These results were consistent with an analysis of correlation between phylogenetic distance and co-occurrence indices of species pairs in the two habitat types. This study supports the notion that disturbed plots are more clustered than expected, rather than ‘undisturbed’ plots being more overdispersed, suggesting that disturbed plant communities are being more strongly influenced by environmental filtering of conserved niche traits

    Activation of Latent HIV Using Drug-Loaded Nanoparticles

    Get PDF
    Antiretroviral therapy is currently only capable of controlling HIV replication rather than completely eradicating virus from patients. This is due in part to the establishment of a latent virus reservoir in resting CD4+ T cells, which persists even in the presence of HAART. It is thought that forced activation of latently infected cells could induce virus production, allowing targeting of the cell by the immune response. A variety of molecules are able to stimulate HIV from latency. However no tested purging strategy has proven capable of eliminating the infection completely or preventing viral rebound if therapy is stopped. Hence novel latency activation approaches are required. Nanoparticles can offer several advantages over more traditional drug delivery methods, including improved drug solubility, stability, and the ability to simultaneously target multiple different molecules to particular cell or tissue types. Here we describe the development of a novel lipid nanoparticle with the protein kinase C activator bryostatin-2 incorporated (LNP-Bry). These particles can target and activate primary human CD4+ T-cells and stimulate latent virus production from human T-cell lines in vitro and from latently infected cells in a humanized mouse model ex vivo. This activation was synergistically enhanced by the HDAC inhibitor sodium butyrate. Furthermore, LNP-Bry can also be loaded with the protease inhibitor nelfinavir (LNP-Bry-Nel), producing a particle capable of both activating latent virus and inhibiting viral spread. Taken together these data demonstrate the ability of nanotechnological approaches to provide improved methods for activating latent HIV and provide key proof-of-principle experiments showing how novel delivery systems may enhance future HIV therapy

    Flanker performance in female college students with ADHD: a diffusion model analysis

    Get PDF
    Attention-deficit hyperactivity disorder (ADHD) is characterized by poor adaptation to environmental demands, which leads to various everyday life problems. The present study had four aims: (1) to compare performance in a flanker task in female college students with and without ADHD (N = 39) in a classical analyses of reaction time and error rate and studying the underlying processes using a diffusion model, (2) to compare the amount of focused attention, (3) to explore the adaptation of focused attention, and (4) to relate adaptation to psychological functioning. The study followed a 2-between (group: ADHD vs. control) × 2-within (flanker conflict: incongruent vs. congruent) × 2-within (conflict frequency: 20 vs. 80 %) design. Compared to a control group, the ADHD group displayed prolonged response times accompanied by fewer errors in a flanker task. Results from the diffusion model analyses revealed that the members of the ADHD group showed deficits in non-decisional processes (i.e., higher non-decision time) and leaned more toward accuracy than participants without ADHD (i.e., setting higher boundaries). The ADHD group showed a more focused attention and less adaptation to the task conditions which is related to psychological functioning. Deficient non-decisional processes and poor adaptation are in line with theories of ADHD and presumably typical for the ADHD population, although this has not been shown using a diffusion model. However, we assume that the cautious strategy of trading speed of for accuracy is specific to the subgroup of female college students with ADHD and might be interpreted as a compensation mechanism

    Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain

    Get PDF
    Back pain is the #1 cause of years lived with disability worldwide, yet surprisingly little is known regarding the biology underlying this symptom. We conducted a genome-wide association study (GWAS) meta-analysis of ch

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways

    International AIDS Society global scientific strategy: towards an HIV cure 2016

    Get PDF
    Antiretroviral therapy is not curative. Given the challenges in providing lifelong therapy to a global population of more than 35 million people living with HIV, there is intense interest in developing a cure for HIV infection. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. This Perspective summarizes the group's strategy
    corecore