417 research outputs found

    Spectral signatures of photosynthesis I: Review of Earth organisms

    Full text link
    Why do plants reflect in the green and have a 'red edge' in the red, and should extrasolar photosynthesis be the same? We provide: 1) a brief review of how photosynthesis works; 2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges; 3) a synthesis of photosynthetic surface spectral signatures; 4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. Given the surface incident photon flux density spectrum and resonance transfer in light harvesting, we propose some rules with regard to where photosynthetic pigments will peak in absorbance: a) the wavelength of peak incident photon flux; b) the longest available wavelength for core antenna or reaction center pigments; and c) the shortest wavelengths within an atmospheric window for accessory pigments. That plants absorb less green light may not be an inefficient legacy of evolutionary history, but may actually satisfy the above criteria.Comment: 69 pages, 7 figures, forthcoming in Astrobiology March 200

    To What Extent Can Vegetation Mitigate Greenhouse Warming? A Modeling Approach

    Get PDF
    Climate models participating in the IPCC Fourth Assessment Report indicate that under a 2xCO2 environment, runoff would increase faster than precipitation overland. However, observations over large U.S watersheds indicate otherwise. This inconsistency suggests that there may be important feedbacks between climate and land surface unaccounted for in the present generation of models. We postulate that the increase in precipitation associated with the increase in CO2 is also increasing vegetation density, which may already be feeding back onto climate. Including this feedback in a climate model simulation resulted in precipitation and runoff trends consistent with observations and reduced the warming by 0.6OC overland. This unaccounted for missing water may be linked to about 10% of the missing land carbon sink. A recent compilation of outputs from 19 coupled atmosphere-ocean general circulation models used in the IPCC Fourth Assessment Report (AR4) shows projected increases in air temperature, precipitation and river discharge for 24 major rivers in the world in response to doubling CO2 by the end of the century (1). The ensemble mean from these models also indicates that, compared to their respective baselines overland, the global mean of the runoff change would increase faster (8.9% per year) than that of the precipitation (5% per year). We analyze century-scale observed annual runoff time-series (1901-2002) over 9 hydrological units covering large regions of the Eastern United States (Fig.1) compiled by the United States Geological Survey (USGS)(2). These regions were selected because they are the most forested; the least water-limited and are not under extensive irrigation. We compare these time-series to similar time-series of observed annual precipitation anomalies spanning the period 1900-1995 (3). Both time-series exhibit a positive longterm trend (Fig. 2); however, in contrast to the analysis of (I), these historic data records show that the rate of precipitation increase is 5.5 % per year, roughly double the rate of runoff increase of 3.1 % per year

    Spectral signatures of photosynthesis II: coevolution with other stars and the atmosphere on extrasolar worlds

    Full text link
    As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take planetary atmospheric compositions simulated by Segura, et al. (2003, 2005) for Earth-like planets around observed F2V and K2V stars, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. We calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the NIR, in bands at 0.93-1.1 microns, 1.1-1.4 microns, 1.5-1.8 microns, and 1.8-2.5 microns. In addition, we calculate wavelength restrictions for underwater organisms and depths of water at which they would be protected from UV flares in the early life of M stars. We estimate the potential productivity for both surface and underwater photosynthesis, for both oxygenic and anoxygenic photosynthesis, and for hypothetical photosynthesis in which longer wavelength, multi-photosystem series are used.Comment: 59 pages, 4 figures, 4 tables, forthcoming in Astrobiology ~March 200

    The combination of sibling victimization and parental child maltreatment on mental health problems and delinquency

    Get PDF
    This study examined how the combination of sibling victimization and parental child maltreatment is related to mental health problems and delinquency in childhood and adolescence. Co-occurrence, additive associations, and interactive associations of sibling victimization and parental child maltreatment were investigated using a sample of 2,053 children aged 5–17 years from the National Survey of Children’s Exposure to Violence. The results provide primarily evidence for additive associations and only suggest some co-occurrence and interactive associations of sibling victimization and child maltreatment. Evidence for co-occurrence was weak and, when controlling for the other type of maltreatment, only found for neglect. Sibling victimization was related to more mental health problems and delinquency over and above the effect of child abuse and neglect. Moderation by sibling victimization depended on child age and was only found for the relation between both types of child maltreatment by parents and delinquency. For mental health, no interactive associations were found. These results highlight the unique and combined associations between sibling victimization on child development.Development Psychopathology in context: famil

    Proton transfer reactions of N-aryl triazolium salts: unusual ortho-substituent effects

    Get PDF
    Previous studies of the C(3)-hydrogen/deuterium exchange reactions of the triazolium ion conjugate acids of triazolyl N-heterocyclic carbenes revealed a change of mechanism under acidic conditions with N1-protonation to a dicationic salt. Interestingly, the data suggested an increase in pKaN1 in the presence of a N-pentafluorophenyl substituent relative to other N-aryl substituents with hydrogens or methyl substituents rather than fluorines at the ortho-positions. To probe the presence of an apparent donor effect of a N-pentafluorophenyl substituent, which differs from the more common electron withdrawing effect of this group, we have studied the analogous deuterium exchange reactions of four triazolium salts with heteroatoms or heteroatom substituents in the 2-position and/or 6-position of the N-aryl ring. These include triazolium salts with N-2,4,6-tribromophenyl 11, N-2,6-dichlorophenyl 12, N-2-pyridyl 13 and N-2-pyrimidinyl 14 substituents. The log kex – pD profiles for 11, 12 and 14 were found to show similar trends at lower pDs as for the previously studied N-pentafluorophenyl triazolium salt, hence supporting the presence an apparent donor effect on pKaN1. Surprisingly, the log kex – pD profile for N-pyridyl salt 13 uniquely showed acid catalysis at lower pDs. We propose herein that this data is best explained by invoking an intramolecular general base role for the N-(2-pyridyl) substituent in conjunction with N1-protonation on the triazolium ring. Finally, the second order rate constants for deuteroxide ion catalysed C(3)-H/D exchange (kDO, M−1 s−1), which could be obtained from data at pDs >1.5, were used to provide estimates of C(3)-carbon acid pKaC3 values for the four triazolium salts 11, 12, 13, 14

    Two-phonon scattering of magnetorotons in fractional quantum Hall liquids

    Get PDF
    We study the phonon-assisted process of dissociation of a magnetoroton, in a fractional quantum Hall liquid, into an unbound pair of quasiparticles. Whilst the dissociation is forbidden to first order in the electron-phonon interaction, it can occur as a two-phonon process. Depending on the value of final separation between the quasiparticles, the dissociation is either a single event involving absorption of one phonon and emission of another phonon of similar energy, or a two-phonon diffusion of a quasiexciton in momentum space. The dependence of the magnetoroton dissociation time on the filling factor of the incompressible liquid is found.Comment: 4 pages, no figure

    Slow-light optical buffers: capabilities and fundamental limitations

    Full text link

    Earthshine observation of vegetation and implication for life detection on other planets - A review of 2001 - 2006 works

    Full text link
    The detection of exolife is one of the goals of very ambitious future space missions that aim to take direct images of Earth-like planets. While associations of simple molecules present in the planet's atmosphere (O2O_2, O3O_3, CO2CO_2 etc.) have been identified as possible global biomarkers, we review here the detectability of a signature of life from the planet's surface, i.e. the green vegetation. The vegetation reflectance has indeed a specific spectrum, with a sharp edge around 700 nm, known as the "Vegetation Red Edge" (VRE). Moreover vegetation covers a large surface of emerged lands, from tropical evergreen forest to shrub tundra. Thus considering it as a potential global biomarker is relevant. Earthshine allows to observe the Earth as a distant planet, i.e. without spatial resolution. Since 2001, Earthshine observations have been used by several authors to test and quantify the detectability of the VRE in the Earth spectrum. The egetation spectral signature is detected as a small 'positive shift' of a few percents above the continuum, starting at 700 nm. This signature appears in most spectra, and its strength is correlated with the Earth's phase (visible land versus visible ocean). The observations show that detecting the VRE on Earth requires a photometric relative accuracy of 1% or better. Detecting something equivalent on an Earth-like planet will therefore remain challenging, moreover considering the possibility of mineral artifacts and the question of 'red edge' universality in the Universe.Comment: Invited talk in "Strategies for Life Detection" (ISSI Bern, 24-28 April 2006) to appear in a hardcopy volume of the ISSI Space Science Series, Eds, J. Bada et al., and also in an issue of Space Science Reviews. 13 pages, 8 figures, 1 tabl

    The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. PIXIE will map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 um wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10^{-3} at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.Comment: 37 pages including 17 figures. Submitted to the Journal of Cosmology and Astroparticle Physic

    SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    Full text link
    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r=0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the "Southern Hole." We show that two ~20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight schedule updated, two typos fixed in Table 2, references and minor clarifications added, results unchange
    • …
    corecore