Proton Transfer Reactions of N-Aryl Triazolium Salts: Unusual Ortho-Substituent Effects

David E. Tucker,^a Peter Quinn,^a Richard S. Massey,^a Christopher J. Collett,^b David J. Jasiewicz,^a Christopher R. Bramley,^a Andrew D. Smith^{b,*} and AnnMarie C. O'Donoghue^{a,*}

^aDepartment of Chemistry, Durham University, South Road, Durham DH1 3LE, UK. ^bEaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St

Andrews, Fife KY16 9ST, UK

EMAIL: annmarie.odonoghue@durham.ac.uk, ads10@st-andrews.ac.uk

ABSTRACT:

Previous studies of the C(3)-hydrogen/deuterium exchange reactions of the triazolium ion conjugate acids of triazolyl NHCs revealed a change of mechanism under acidic conditions with N1-protonation to a dicationic salt. Interestingly, the data suggested an *increase* in pK_a^{N1} in the presence of a N-pentafluorophenyl substituent relative to other N-aryl substituents with hydrogens or methyl substituents rather than fluorines at the *ortho*-positions. To probe this apparent donor effect of a *N*-pentafluorophenyl substituent, which differs from the more common electron withdrawing effect of this group, we have studied the analogous deuterium exchange reactions of four triazolium salts with heteroatoms or heteroatom substituents in the 2- and/or 6positions of the N-aryl ring. These include triazolium salts with N-2,4,6tribromophenyl 11, N-2,6-dichlorophenyl 12, N-2-pyridyl 13 and N-2-pyrimidinyl 14 substituents. The log $k_{ex} - pD$ profiles for 11, 12 and 14 were found to show similar trends at lower pDs as for the previously studied N-pentafluorophenyl triazolium salt, hence supporting the presence an apparent donor effect on pK_a^{N1} . Surprisingly, the log $k_{ex} - pD$ profile for *N*-pyridyl salt **13** uniquely showed acid catalysis at lower pDs. We propose herein that this data is best explained by invoking an intramolecular general base role for the N-(2-pyridyl) substituent in conjunction with N1-protonation on the triazolium ring. Finally, the second order rate constants for deuteroxide-ion catalyzed C(3)-H/D exchange (k_{DO} , M⁻¹s⁻¹), which could be obtained from data at pDs > 1.5, were used to provide estimates of C(3)-carbon acid pK_a^{C3} values for the four triazolium salts 11 – 14.

INTRODUCTION

Triazol-3-ylidenes **1** form a class of stable N-heterocyclic carbenes (NHC) that are frequently utilized as efficient, selective organic catalysts in a broad range of transformations.^[1-7] Closely related to other stable NHCs including imidazole-2-ylidenes **2**, imidazolin-2-ylidenes **3**, thiazol-2-ylidenes **4** and trihydropyrimidin-2-ylidenes **5**, these carbenes have seen application in diverse areas of chemistry in addition to organic catalysis.^[8-17] Common to most applications of NHCs of this type is the *in situ* generation of the carbene from the conjugate acid azolium salt precursor by use of an appropriate base. We and others have reported the kinetic acidities towards hydroxide ion and estimates of the aqueous pK_a values of the conjugate acid precursors to NHCs **1-5**.^[18-23]

In particular, we showed that the p*D* rate profiles for the deuterium exchange reactions of triazolium salt precursors **6** to triazol-3-ylidenes **7** reveal distinct differences from analogous data for NHCs **2-5**.^[21] The presence of the additional ring nitrogen in triazolium ions **6** allows for alternative deuterium exchange mechanisms under more acidic conditions. Deuteronation at N(1) can occur to give dicationic triazolium ions **8**, which are precursors to monocationic N-heterocyclic carbenes **9**. At higher p*D* values, log k_{ex} values were observed to increase linearly with p*D* consistent with a first order dependence on deuteroxide ion and exchange via triazol-3-ylidenes **7** (Path A, Scheme 1). At lower p*D* values, upward deviations were observed from the line of unit slope through the log $k_{ex} - pD$ data consistent with a change in mechanism for deuterium exchange.

Scheme 1 Potential Mechanistic Pathways for Deuterium Exchange at C(3)-H of Triazolium Ions 6.

Of the large series of triazolium salts studied in aqueous solution, the altered dependence of log k_{ex} values on pD under more acidic conditions was most prevalent, and occurred at significantly higher pD values, for *N*-pentafluorophenyl triazolium salt **6a** (Ar = C₆F₅).^[21] For the structurally homologous series of triazolium salts **6**, the pD value for onset of the change in slope decreased in the order **6a** > **6b** > **6c** > **6d** ~ **6e** ~ **6f** (Ar = C₆F₅ (a); 4-CN-Ph (b); 4-F-Ph (c); H (d); 2,4,6-(Me₃)-Ph (e); 4-MeO-Ph (f)). Only in the case of triazolium salt **6a** was the initial decreased dependence on pD further followed by a downward break at the lowest pDs studied. Data for **6a** could be fit by an equation describing either of two kinetically equivalent mechanistic options (Paths B or C, Scheme 1), which *both* require protonation at N1 of the triazolium ring. Path B involves a solvent promoted deuterium exchange reaction of the cationic triazolium salt **6a** with removal of active species *via* N-protonation to a dicationic triazolium ion **8a**. Path C entails no solvent reaction of the monocationic

salt **6a**, but instead the initial N-protonation at N(1) of salt **6a** followed by deuteroxide-catalyzed exchange on the dicationic triazolium salt **8a**. Both of these mechanisms allow for the observed continued decrease in k_{ex} , the first order rate constants for deuterium exchange, with p*D*. Based on an analysis of the results of fitting through assumption of either pathway, we suggested that Path C was the more likely option.

In order to explain the differences in the observed kinetic data for **6a-f**, we postulated that the presence of an *ortho*-heteroatom, *e.g.* fluorine, could favour protonation (or deuteronation) at N(1) resulting in an increased prevalence of dicationic triazolium salts **8** in the normal pD range.^[21] Of the substrates studied, only the *N*-pentafluorophenyltriazolium salt **6a** had *ortho*-heteroatoms rather than hydrogen or methyl groups on the N-aryl ring. A higher pK_a (N1) for salt **6a** seems counter-intuitive based on the electron-withdrawing, through-bond, inductive substituent effect of fluorine, which would be expected to decrease basicity at N(1). However, protonation at N(1) may be favoured in order to suppress unfavourable electrostatic interactions between this nitrogen and spacially proximal N-aryl *ortho*-fluorines, or, as a result of stabilizing through-space N⁺-H...*ortho*-F interactions in the N-protonated salt.

In related mechanistic studies of triazolium catalysis of benzoin and Stetter reactions by triazolium salts, we have also observed unexpected substituent effects in the presence of *ortho*-heteroatom substituents on the N-aryl ring of catalyst.^[24] The common first step of both of these reactions involves the reaction of an aryl aldehyde and triazolium salt in the presence of base to give a deuteroxy aryl intermediate **10** (Scheme 2, shown for benzoin condensation). We have observed that N-aryl *ortho*-X-heteroatom substituents significantly increase rate and equilibrium constants for formation of adducts **10** relative to *para*-substituted and *ortho*-alkyl analogues. One possible explanation of these observations is the presence of an O-D...X interaction in the adduct similar to the N⁺-H...*ortho*-F interaction proposed above.

Scheme 2 Triazolium Catalysis of the Benzoin Condensation.

In order to further probe these *ortho*-substituent effects, we have studied the deuterium exchange reactions of a number of additional triazolium salts **11-14** with heteroatoms or heteroatom substituents in the 2- and/or 6-positions of the N-aryl ring. The data for these substrates also provides further evidence that Path C, and not Path B, is accountable for the altered dependence of log k_{ex} values on pD under more acidic conditions. In addition, we observed that the N-pyridyl triazolium salt **13** displays a different N-aryl substituent effect to all other triazolium substrates. Formal acid catalysis of deuterium exchange was uniquely observed for N-pyridyltriazolium salt **13** under more acidic conditions, providing evidence for a possible intramolecular deprotonation reaction involving the pyridyl substituent.

EXPERIMENTAL

The syntheses of triazolium salts 11-14, the preparation of solutions, the determination of pD and NMR methods are described in the Supporting Information.

Kinetic measurements

The kinetic procedures for the measurement of rate constants for deuterium exchange for triazolium salts **11-14** were identical to those previously reported for the study of

analogous salts **6a-f**.^[21] Due to the lability of the triazolium salts towards C(3)-H/Dexchange in unbuffered D₂O solvent, reactions were initiated by addition of a solution, containing internal standard (tetramethylammonium deuteriosulfate) and buffer or DCl, directly to the rigorously dried triazolium salt. The final substrate and internal standard concentrations in the D₂O reaction solutions were 5 mM and 1 mM, respectively. Reaction solutions in NMR tubes were incubated at 25 °C in a thermostatted water bath. pD values were recorded at the beginning and end of each reaction and were found to be constant within error (± 0.05) . The progress of the C(3)-H/D deuterium exchange reaction was followed by ¹H NMR spectroscopy during the disappearance of 75-90% of the C(3)-H signal of each substrate. There was no change in the integrated areas of signals due to all other protons of triazolium salts 11-13 during this period, and no appearance of new signals, consistent with the absence of any parallel decomposition or hydrolysis reactions under the reaction conditions. For N-pyrimidinyl salt 14 a competing reaction was observed to occur to a small extent accounting for $\leq 6\%$ of total products. Based on the NMR signals due to the products formed, this reaction was presumed to be a nucleophilic aromatic substitution reaction of DO⁻ or D₂O at C(2) of the pyrimidinyl ring.

The observed pseudo first order rate constants for exchange of the C(3)-proton for deuterium, k_{ex} (s⁻¹), were obtained from non-linear least square fitting of reaction progress against time to a first order exponential decay function. Reaction progress was defined by values of f (s), the fraction of remaining unexchanged substrate, which were calculated from Eqn. (1), where A_{C3H} and A_{std} are the integrated areas of the singlet due to the C(3)-H of the triazolium salt and the broad triplet at 3.3 ppm due to the methyl hydrogens of internal standard, tetramethylammonium deuterosulfate. In the case of triazolium salt 14, small corrections were made for the parallel S_NAr reaction of substrate such that the corrected f (s) values represented reaction due to deuterium exchange only.

$$f(s) = \frac{(A_{C_{3H}} / A_{std})_{t}}{(A_{C_{2H}} / A_{std})_{0}}$$
(1)

Representative NMR spectral overlays of the deuterium exchange reactions, first order kinetic plots, tabulated k_{ex} data and log $k_{ex} - pD$ rate profiles are included in the Supporting Information for each triazolium salt **11-14** (Figures S1-S16, Tables S1-S4).

RESULTS AND DISCUSSION

The C(3)-H/D deuterium exchange reactions of triazolium salts **11-14** were performed in aqueous acetic acid buffer or DCl solutions at a range of p*D* values and at constant ionic strength, I = 1.0 (KCl). For these substrates, deuterium exchange was too fast to monitor above p*D* 4 at 25 °C. Buffer catalysis of deuterium exchange was found to be insignificant in all previous studies of azolium ion conjugate acids of N-heterocyclic carbenes including representative triazolium salts.^[18, 20, 21] Hence, it was assumed that buffer catalysis of exchange was not significant and the observed pseudo first order rate constants for exchange, k_{ex} (s⁻¹) were used directly on p*D* - rate profiles of deuterium exchange.

As in the previous study of a large series of triazolium salts, values of log k_{ex} for 11 and 12 (Figure 1, \blacktriangle and \checkmark) increase with pD in the region from pD = 0 to 4.5. Figure 1 shows the pD rate profiles for these salts in comparison with those for two previously studied *N*-pentafluorophenyl and *N*-phenyl triazolium salts **6a** and **6d**, respectively. Figure 2 shows the pD rate profiles for *N*-pyridyl and *N*-pyrimidinyl salts **13** and **14** also in comparison with previous data for **6a** and **6d**, respectively. The data for *N*-pyridyl triazolium salt **13** (Figure 2, \diamondsuit) was distinctly different from all other triazolium salts studied including *N*-pentafluorophenyl substrate **6a**. Values of log k_{ex} for **13** *decrease* with pD in the region from pD = 0 to 1.3 and increase with pD in the region 1.3 - 4.5. By contrast, the log $k_{ex} - pD$ profile for *N*-pyrimidinyl salt **14** (Figure 2, \diamondsuit) is comparable to those for **11** and **12** displaying an increase of rate constants for exchange with pD in the whole region studied.

Deuterium Exchange Reactions of N-2,4,6-Tribromophenyl- 11 and N-2,6-Dichlorophenyl- 12 Triazolium Tetrafluoroborates

Deuterium exchange kinetic data for *N*-2,4,6-tribromophenyl- and *N*-2,6dichlorophenyl triazolium salts **11** and **12** show the same dependencies on p*D* as observed for *N*-pentafluorophenyl salt **6a**. In particular, there is a marked change in the dependence of log k_{ex} values on p*D* under more acidic conditions closely similar to data for **6a** and more significant than for **6b-6f**. At p*D*s > 1.5, values of log k_{ex} for **11** and **12** increase linearly with p*D* and the data may be fit by a line of unit slope indicating a first order dependence on deuteroxide ion concentration in this region. This is consistent with a mechanism involving deuteroxide-catalyzed C3-H/D exchange of the monocationic triazolium ion substrate (Path A, Scheme 1). At pDs < 1.5, the dependencies of log k_{ex} on pD decrease and data points in this region deviate upwards from the line of unit slope that fits the remaining data at higher pDs. There is also the beginning of a further downward break at the lowest pD values as observed previously for *N*-pentafluorophenyltriazolium salt **6a**. By comparison, the profile for unsubstituted *N*-phenyl salt **6d** (Figure 2, \blacksquare) is essentially linear with slope unity for all data points except at pDs < 0.2.

As in our previous study for **6a**, the data for salts **11** and **12** fit well to a kinetic scheme allowing for the occurrence of either Paths B or C at lower p*D*s in conjunction with Path A at higher p*D*s. The log $k_{ex} - pD$ data fits well to Eqns. (2) or (3) which allow for Paths A and B or Paths A and C, respectively. In these equations, k_{DO} (M⁻¹s⁻¹) is the second order rate constant for deprotonation of monocationic triazolium ion (*c*,*f*: **6**, Scheme 1) by deuteroxide, $K_w = 10^{-14.87}$ is the ion product of D₂O at 25 °C, $\gamma_{DO} = 0.73$ is the activity coefficient for deuteroxide ion under our experimental conditions, K_a^{N} is the acidity constant for ionization at N, k_{D2O} (s⁻¹) is the first order rate constant for deprotonation of dicationic triazolium ion (*c*,*f*: **8**, Scheme 1) by deuteroxide ion. Fitting to either equation yields identical values for k_{DO} and K_a^{N} (Table 1), whereas values for k_{D2O} or k_{DO}^{-1} are obtained by fitting to Eqn. (2) or Eqn. (3), respectively (Table 2). For comparison, previously reported data^[21] for *N*-pentafluorophenyl and phenyl salts **6a** and **6d** are also included in Tables 1 and 2.

$$\log k_{\text{ex}} = \log \left[\frac{K_{\text{a}}^{\text{N}} \left(\left(\frac{k_{\text{DO}} K_{\text{w}}}{\gamma_{\text{DO}}} \right) 10^{\text{pD}} \right) + \left(K_{\text{a}}^{\text{N}} k_{\text{D}_{2}\text{O}} \right)}{\left(K_{\text{a}}^{\text{N}} + 10^{-\text{pD}} \right)} \right]$$
(2)

$$\log k_{\text{ex}} = \log \left[\frac{K_{\text{a}}^{\text{N}} \left(\left(\frac{k_{\text{DO}} K_{\text{w}}}{\gamma_{\text{DO}}} \right) 10^{\text{pD}} \right) + \left(\frac{k_{\text{DO}} K_{\text{w}}}{\gamma_{\text{DO}}} \right)}{\left(K_{\text{a}}^{\text{N}} + 10^{-\text{pD}} \right)} \right]$$
(3)

Values of the second order rate constants, k_{DO} , for C(3)-deprotonation by deuteroxide ion of triazolium salts **6a**, **6d**, **11** and **12** decrease in the order **6a** > **11** > **12** > **6d** although the difference across this series is only 10-fold (Table 1). Similarly small N-aryl substituent effects were observed for the twenty triazolium salts previously studied with k_{DO} values only varying by a maximum of 37-fold across this large series. The order of reactivity of triazolium salts corresponds to an increase in rate constant for deprotonation at C(3) with more electron-withdrawing N-aryl substituents.

The acidity constants for protonation at nitrogen, K_a^{N} , increase in the order **6a** < 11 < 12 and correspond to pK_a^N values of 0.18, 0.04, 0.01, respectively (Table 1). The relatively large fitting errors associated with these K_a^N values are expected as only ~50% N-protonation has occurred at pD = 0. The values for pK_a^N are very similar within error, and the data shows that there is a small increase in the degree of N-protonation within the normal pH range in the order 12 < 11 < 6a. Importantly, as observed previously for **6a**, the pK_a^N values for **11** and **12** must be substantially higher than for N-phenyl salt 6d (Figure 2) and other N-aryl salts 6b-f. The pD profiles for **6b-f** are linear through most of the pD region studied, with only a few data points showing upward deviation, suggesting no substantial protonation at N1 and lower pK_a^N values. In particular, the profiles for N-4-cyanophenyl **6b** and 2,6dichlorophenyl 12 substrates are almost superimposable at pDs > 1.5 yielding similar $k_{\rm DO}$ values (Figure S17), however, the altered dependence on pD is greater for 12 under more acidic conditions. As the electronic substituent effect on k_{DO} is similar in both cases, this supports the existence of an additional ortho-chloro substituent effect to explain the observed differences in pK_a^N . This N-aryl net *donor* effect on pK_a^N for 6a, 11 and 12 is opposite to the normal inductive through-bond electron accepting substituent effect of these substituents, which would favour an increase in acidity and decrease in pK_a as observed at C(3). Instead, we observe an increase in the basicity of N(1) in the presence of ortho-fluoro, bromo and chloro substituents relative to other N-aryl triazolium ions 6b-f.

Previously,^[21] we suggested that Path C rather than B was the most likely mechanism under more acidic conditions to explain the altered dependence of log k_{ex} values on pD. This was mainly based on a comparison of rate constants for deuterium exchange for triazolium ion **6a** with analogous literature data for thiazolium ions **15**.^[23, 25] There is no additional site for protonation within the thiazolium ring of **15**

unlike for the triazolium analogue 6a. Washabaugh and Jencks did observe the onset of a true pD-independent solvent reaction for four thiazolium salts 15 in concentrated DCl solutions at pDs << 0 yielding rate constants, k_{D2O} , that range from $1.6 \times 10^{-9} \text{ s}^{-1}$ up to 9.4×10^{-8} s⁻¹. In a comparison of data for triazolium and thiazolium salts, we previously noted that the difference in k_{DO} values is significantly smaller than for k_{D2O} values. As an example, $k_{\rm DO} = 4.67 \times 10^7 \,\mathrm{M}^{-1} \mathrm{s}^{-1}$ for the *N*-cyanomethyl thiazolium salt 15 (R₁ = CN, R₂ = H), which is 14-fold lower than $k_{DO} = 6.82 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$ for Npentafluorophenyltriazolium salt 6a (Table 1), whereas there is a much greater 650fold difference for the corresponding k_{D2O} values $[k_{D2O} = 9.4 \times 10^{-8} \text{ s}^{-1} \text{ for } 15 \text{ (R}_1 =$ CN, $R_2 = H$) versus $k_{D2O} = 6.1 \times 10^{-5} \text{ s}^{-1}$ for **6a** (Table 2)]. It is difficult to explain a substantially larger ring effect on the solvent compared with the deuteroxidecatalyzed deuterium exchange reactions, and, we suggested that this provides evidence that Path B is not the correct mechanism to account for our data at low pDs. Further, the N-protonated dicationic substrate would be expected to be more acidic at C(3) than the monocationic analogue, and it seems logical (due to the requirement for N-protonation to explain the observed log $k_{ex} - pD$ data for **6a**) that a deuteroxide reaction of the dication would be more likely than a water reaction on the monocation given the greater reactivity of *both* the substrate and the base in the former case, albeit at very low concentrations of DO⁻.

The new data in Table 2 for triazolium salts **11** and **12** supports these conclusions. The k_{D2O} values calculated for **11** and **12** using Eqn. (2) are 85 – 213-fold larger than observed for the true p*D*-independent solvent reactions of the *N*-cyanomethyl thiazolium salt **15** (R₁ = CN, R₂ = H), whereas there is a much smaller ring effect on k_{DO} values (< 10-fold), again suggesting that Path B does not occur for the former triazolium ions. Estimates for k_{DO} ' calculated for C(3)-deprotonation of the dicationic conjugate acids of **11** and **12** (*c.f.* **8** in Scheme 2), for reaction *via* Path C, are all at the diffusional limit (Table 2). This is logical given that k_{DO} values for the less reactive monocationic salts are already as high as ~10⁸ M⁻¹s⁻¹. Further, as will be

seen below, the observed acid catalysis in the case of N-pyridyl salt 13 is most logically accounted for in tandem with Path C for the other triazolium salts at lower pDs.

Deuterium Exchange Reactions of N-Pyridyltriazolium 13 and N-2,6-Pyrimidinyl- 14 Triazolium Tetrafluoroborates

As for triazolium salts 11-12, values of log k_{ex} for *N*-pyridyl salt 13 increase linearly at p*D* s > 1.5 (Figure 2, •), and the data may be fit by a line of unit slope consistent with a first order dependence on deuteroxide ion concentration in this region and deuterium exchange via Path A (Scheme 1). In contrast with data for the other triazolium salts in Figure 1, values of log k_{ex} for 13 *decrease* with p*D* in the region from p*D* = 0 to 1.3. This observed acid catalysis of deuterium exchange requires protonation of substrate and a *subsequent* p*D*-independent C(3)-deprotonation of the resulting dicationic substrate.

The log $k_{ex} - pD$ data for *N*-pyridyl salt **13** fits well to Eqn. (4), which allows for both deuteroxide-catalyzed exchange on the monocationic triazolium salt (Path A, Scheme 1) and, additionally, a p*D*-independent C(3)-deprotonation reaction on the dicationic substrate. In Eqn. (4), k_{DO} , K_w and γ_{DO} are as defined above. The first order rate constant k' (s⁻¹) refers to p*D*-independent deprotonation of dicationic substrate and mechanistic options for this process are discussed below. In this case, either the pyridyl nitrogen or N1 of the triazolium ring could potentially be protonated to give a dicationic species. The $pK_a^N = -0.05$ calculated for *N*-pyridyl substrate **13** (Table 1) is similar to pK_a^N values for triazolium salts **6a**, **11** and **12** for which additional protonation can only occur at N(1) of the triazolium ring. However, $pK_a^N = -0.05$ may also be consistent with the acidity constant for the pyridinium nitrogen. Numerous solution studies establish the pK_a of the N-protonated pyridinium ion at $\sim 5^{[26]}$ and this would be expected to substantially decrease in the presence of a monocationic triazolium substituent.

$$\log k_{\text{ex}} = \log \left[\frac{K_{\text{a}}^{\text{N}} \left(\left(\frac{k_{\text{DO}} K_{\text{w}}}{\gamma_{\text{DO}}} \right) 10^{\text{pD}} \right) + k' \left(10^{-\text{pD}} \right)}{\left(K_{\text{a}}^{\text{N}} + 10^{-\text{pD}} \right)} \right]$$
(4)

Possible mechanisms formally consistent with the observed acid catalysis of deuterium exchange for *N*-pyridyl salt **13** at lower p*D*s are shown in Scheme 3. In analyzing these options, a key consideration is whether these mechanisms can explain why a p*D*-independent reaction of N-protonated salt is possible for **13** but has not been observed for any other triazolium ion. Option D1 (Scheme 3) involves initial protonation on N1 of the triazolium ring followed by p*D*-independent deprotonation by D₂O *without* direct involvement of the pyridyl ring. This mechanism may be discounted as acid catalysis of deuterium exchange has not been observed for any other triazolium ion studied to date, and a remote pyridyl substituent would not be expected to drastically increase the rate of deprotonation of dicationic substrate by solvent, especially as k_{DO} values for exchange *via* Path A (Scheme 1) are similar for **13** and other triazolium salts studied.

Scheme 3 Potential Mechanistic Options for p*D*-independent deprotonation of a dicationic N-deuteronated *N*-pyridyl triazolium salt.

Option D2 (Scheme 3) involves initial protonation on the pyridyl nitrogen, rather than N1 of the triazolium ring, followed by pD-independent deprotonation by water. Remote protonation on the adjacent pyridyl ring would not significantly increase the rate of deprotonation at C(3) by solvent to enable competition with Path C (Scheme 1). The latter would be expected to be faster due to N1-protonation on the more proximal triazole ring with subsequent C(3) deprotonation by more basic deuteroxide ion. N-protonation of the pyridyl substituent could, in theory, increase the rate of deprotonation by water at C(3) to compete with a water reaction of the monocationic triazolium salt (Path B, Scheme 1)). However, the data for all other triazolium salts requires protonation at N1, as the pD-rate profiles do not show pDindependence and log k_{ex} values continue to decrease, hence, this latter option is selfcontradictory. Protonation of the more proximal triazolium ring should then also result in a competing water reaction like D1 above and acid catalysis would also be expected for the other triazolium salts. On this basis, Option D2 cannot account for the unique observation of acid catalysis for 13 in competition with either Path B or C for the other triazolium salts.

Another possibility is that a shared hydrogen bond forms between N1 on the triazole and the pyridyl nitrogen thereby accelerating the rate of deprotonation at C(3) by solvent (Option D3, Scheme 3). However, due to the non-linear geometry, this hydrogen bond would be expected to be weak. Also, it is difficult to envisage why this would occur only for a solvent deprotonation reaction and not for deprotonation by deuteroxide ion.

A final option (D4, Scheme 3) is compatible with the occurrence of acid catalysis in the case of the *N*-pyridyl salt only, and also supports Path C as the main mechanism for deuterium exchange at lower pDs for the other triazolium salts **6a**, **11** and **12** rather than Path B. In this mechanism, observed acid catalysis can be explained by N-protonation on the triazolium ring accompanied by intramolecular deprotonation at C(3) by the pyridyl nitrogen. This intramolecular deprotonation could be direct or may involve one or more solvent molecules. As this option is not available to the other substrates **6a**, **11** and **12**, it could provide an explanation for the singular occurrence of acid catalysis in the case of N-pyridyl substrate **13** only.

The log $k_{ex} - pD$ profile for *N*-pyrimidinyl salt **14** (Figure 2, \diamondsuit) is comparable to those for **11** and **12** displaying an increase of rate constants for exchange with pD in the whole region studied and no acid catalysis of deuterium exchange is observed at lower pDs. This suggests that intramolecular catalysis, through C(3) deprotonation by the adjacent pyrimidine ring, is not occurring in this case, which is logical given the much decreased basicity of a simple monocyclic pyrimidine relative to a pyridine nitrogen ($pK_{a}s$ of 5.1 and 1.1 for N-protonated pyridinium and pyrimidinium ions, respectively).^[26] The data for N-pyrimidinyl salt **14** fits well to Eqns. (2) or (3), and the resulting values for k_{DO} , K_a^N , and, k_{D2O} or k_{DO}' are shown in Tables 1 and 2. Significantly, the observed $pK_a^N = 0.36$ for the *N*-pyrimidinyl substrate **14** is very similar to that observed for *N*-pyridyl substrate **13** ($pK_a^N = -0.05$), and provides further evidence that protonation occurs on the triazolium N(1) rather than the pyrimidine ring, which would be expected to yield more different pK_as . This lends further support to reaction *via* Path C as the dominant mechanism for all salts, except N-pyridyl triazolium ion **13**, at lower pDs.

Estimation of Carbon acid pK_a Values

The carbon acid pK_a values for deprotonation at C(3) for monocationic triazolium salts **11-14** may be determined using Eqn. (5), which is derived for Scheme 4.^[18, 20-22, 27-31] In this equation, $k_{\rm HO}$ (M⁻¹s⁻¹) is the second order rate constant for deprotonation at C(3) by hydroxide ion, which may be calculated from the corresponding $k_{\rm DO}$ value using a value of $k_{\rm HO}/k_{\rm DO} = 2.4^{[32]}$ for the secondary solvent isotope effect on the basicity of HO⁻ in H₂O versus DO⁻ in D₂O. As discussed previously,^[18, 20, 21] the absence of significant general base catalysis of exchange provides evidence that the reverse protonation of the triazol-3-ylidene 7 by water is equal or close to the limiting rate constant for the physical process of dielectric relaxation of solvent ($k_{\rm HOH} \le k_{\rm reorg} = 10^{11} \, {\rm s}^{-1} \, {}^{[33, 34]}$).

$$pK_{a} = pK_{w} + \log \frac{k_{HOH}}{k_{HO}}$$
(5)

Scheme 4 Equilibrium for deprotonation by hydroxide of triazolium ions 6 at C(3).

The C(3)-H p K_a values for triazolium salts **11-14** are similar and range from 16.7-17.3. The values are comparable to those estimated for related thiazolium ions (*c.f.* **15**), however, are substantially lower than our previously published values for the conjugate acids of imidazole-2-ylidenes **2**, imidazolin-2-ylidenes **3**, and trihydropyrimidin-2-ylidenes. This is due to the presence of the additional electron withdrawing ring nitrogen, which increases the stability of the formally neutral NHC 7 relatively to the cationic conjugate acid **6**. This large in-plane electron withdrawing effect of nitrogen is relatively common in heterocyclic systems. As mentioned earlier, the p K_a of N-protonated pyrimidine is 4 units lower than for the pyridinium ion due to the additional ring nitrogen atom in the former system.

The estimated k_{DO} ' values for C(3)-deprotonation of N-protonated **6a**, **11**, **12** and **14** by deuteroxide ion (Table 2) are at the diffusional limit. The new k_{DO} ' data for **11**, **12** and **14**, are all safely within error of typical bimolecular values for diffusion of small molecules in solution ($k_d \sim 5 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$). This provides confidence in a stepwise rather than concerted mechanism for deuterium exchange at C(3) of the dicationic salt, *via* a distinct monocationic NHC intermediate, as shown in Scheme 1 (Path C). To our knowledge, a monocationic NHC **9**, or a N1-alkylated analogue, has not been directly isolated to date, and these additional results for **11**, **12** and **14** provide evidence for the transient formation of these species in aqueous solution under acidic conditions.

The C(3)-carbon acid pK_a values for N(1)-protonated dicationic triazolium salts (*c.f.* **8**, Scheme 1) would be predicted to be substantially lower than for monocationic triazolium ions **6**. It is predicted that the reverse protonation of the monocationic NHCs (*c.f.* **9**) will fall below the upper limiting rate constant for protonation by solvent ($k_{\text{reorg}} = 10^{11} \text{ s}^{-1}$). Using an average value of $k_{\text{DO}}' = 5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ together with $k_{\text{HOH}} \le 10^{11} \text{ s}^{-1}$ in Eqn. (5) yields an upper limit estimate of $pK_a \le$ 15.3 for the C(3)-carbon acidity of a dicationic triazolium ions. These pK_{as} establish the conjugate acids **8** of monocationic carbenes **9** as the most acidic of all NHC families studied to date in aqueous solution.

CONCLUSIONS

Our studies of the deuterium exchange reactions of ortho-disubstituted triazolium salts 11-12 provides additional evidence for formal 2-heteroatom donor effects on pK_a values at N(1). In particular, there is a marked change in the dependence of log k_{ex} values on pD under more acidic conditions closely similar to data for 6a and more significant than for **6b-6f** where the latter have only hydrogens or methyl groups rather than halogens in the 2-position. Although the pD profiles for all the triazolium ions 6a-f and 11-12 are very similar above pD 1.5 yielding k_{DO} values within ~10-fold of each other, the altered dependence on pD under more acidic conditions is more dominant for 2-halo-substituted ions 6a, 11 and 12 than for 6b-6f. The calculated pK_a^N values decrease in the order F > Br > Cl although the difference is very small across the series. By contrast, the corresponding C(3)-carbon acid pK_{as} increase across this series as a result of a normal electron-withdrawing inductive effect of these substituents. The donor effect on pK_a^N , which favours protonation at N(1), may be to suppress unfavourable electrostatic interactions between N(1) and spacially proximal N-aryl ortho-heteroatoms, or, could be a result of stabilizing through-space N⁺-H...ortho-X interactions in the N-protonated salt. The present study also reveals unique substituent effects for the N-(2-pyridyl)-triazolium system 13, which shows distinct acid catalysis of deuterium exchange at lower pD values. This data is best explained by invoking an intramolecular general base role for the N-(2-pyridyl) substituent in conjunction with N1-protonation on the triazolium ring. Overall, these results highlight the varying roles of ortho-heteroatoms in influencing the chemical behavior of widely-used triazolium salts in organic catalysis.

ACKNOWLEDGEMENTS

We thank the EPSRC (DET, RSM and CJC) and Durham University (PQ, DJJ and CRB) for funding of this project.

REFERENCES

- [1] A. T. Biju, N. Kuhl, F. Glorius, *Acc. Chem. Res.* **2011**, *44*, 1182.
- [2] X. Bugaut, F. Glorius, *Chem. Soc. Rev.* **2012**, *41*, 3511.
- [3] D. Enders, O. Niemeier, A. Henseler, *Chem. Rev.* **2007**, *107*, 5606.
- [4] J. Mahatthananchai, J. W. Bode, *Chem. Sci.* **2012**, *3*, 192.
- [5] N. Marion, S. Díez-González, S. P. Nolan, *Angew. Chem. Int. Ed.* **2007**, *46*, 2988.
- [6] C. A. Rose, S. Gundala, C.-L. Fagan, J. F. Franz, S. J. Connon, K. Zeitler, *Chem. Sci.* **2012**, *3*, 735.
- [7] S. J. Ryan, L. Candish, D. W. Lupton, *Chem. Soc. Rev.* **2013**, *42*, 4906.
- [8] R. W. Alder, M. E. Blake, L. Chaker, J. N. Harvey, F. Paolini, J. Schutz, *Ang. Chem. Int. Ed.* **2004**, *43*, 5896.
- [9] R. H. Crabtree, *Coord. Chem. Rev.* **2013**, *257*, 755.
- [10] S. J. Hock, L.-A. Schaper, W. A. Herrmann, F. E. Kuehn, *Chem. Soc. Rev.* 2013, 42, 5073.
- [11] W. Liu, R. Gust, *Chem. Soc. Rev.* **2013**, *42*, 755.
- [12] O. R. Luca, R. H. Crabtree, *Chem. Soc. Rev.* **2013**, *42*, 1440.
- [13] C. D. Martin, M. Soleilhavoup, G. Bertrand, *Chem. Sci.* **2013**, *4*, 3020.
- [14] D. Martin, M. Melaimi, M. Soleilhavoup, G. Bertrand, *Organometallics* **2011**, *30*, 5304.
- [15] M. Melaimi, M. Soleilhavoup, G. Bertrand, *Ang. Chem. Int. Ed.* **2010**, *49*, 8810.
- [16] B. M. Neilson, A. G. Tennyson, C. W. Bielawski, J. Phys. Org. Chem. 2012, 25, 531.
- [17] V. P. Reddy, A. Vadapalli, E. Sinn, N. Hosmane, J. Organomet. Chem. 2013, 747, 43.
- [18] T. L. Amyes, S. T. Diver, J. P. Richard, F. M. Rivas, K. Toth, J. Am. Chem. Soc. 2004, 126, 4366.
- [19] J. P. Guthrie, R. A. M. O'Ferrall, A. C. O'Donoghue, W. E. Waghorne, I. Zrinski, *J. Phys. Org. Chem.* **2003**, *16*, 582.
- [20] E. M. Higgins, J. A. Sherwood, A. G. Lindsay, J. Armstrong, R. S. Massey, R. W. Alder, A. C. O'Donoghue, *Chem. Commun.* 2011, 47, 1559.
- [21] R. S. Massey, C. J. Collett, A. G. Lindsay, A. D. Smith, A. C. O'Donoghue, *J. Am. Chem. Soc.* **2012**, *134*, 20421.
- [22] A. C. O'Donoghue, R. S. Massey, in *Contemporary Carbene Chemistry, Vol.* 7 (Eds.: R. A. Moss, M. P. Doyle), Wiley, Hoboken, New Jersey, **2014**, pp. 75.
- [23] M. W. Washabaugh, W. P. Jencks, *Biochemistry-Us* **1988**, *27*, 5044.
- [24] C. J. Collett, R. S. Massey, O. R. Maguire, A. S. Batsanov, A. C. O'Donoghue, A. D. Smith, *Chem. Sci.* **2013**, *4*, 1514.
- [25] M. W. Washabaugh, W. P. Jencks, J. Am. Chem. Soc. **1989**, 111, 683.
- [26] W. P. Jencks, J. Regenstein, in *Handbook of Biochemistry and Molecular Biology, Physical Chemical Data*, **1976**, pp. J187.
- [27] T. L. Amyes, J. P. Richard, J. Am. Chem. Soc. 1992, 114, 10297.
- [28] T. L. Amyes, J. P. Richard, J. Am. Chem. Soc. **1996**, 118, 3129.
- [29] R. J. Delley, S. Bandyopadhyay, M. A. Fox, C. Schliehe, D. R. W. Hodgson, F. Hollfelder, A. J. Kirby, A. C. O'Donoghue, *Org. Biomol. Chem* **2012**, *10*, 590.
- [30] J. P. Richard, G. Williams, J. L. Gao, J. Am. Chem. Soc. **1999**, 121, 715.

- [31] J. P. Richard, G. Williams, A. C. O'Donoghue, T. L. Amyes, *J. Am. Chem. Soc.* **2002**, *124*, 2957.
- [32] V. Gold, S. Grist, J. Chem. Soc. Perkin Trans. 2 1972, 89.
- [33] U. Kaatze, J. Chem. Eng. Data **1989**, 34, 371.
- [34] U. Kaatze, R. Pottel, A. Schumacher, J. Phys. Chem. **1992**, 96, 6017.

Figure 1. pD-rate profiles for the deuterium exchange reactions of the C(3)-proton of triazolium salts 11 (\blacktriangle) and 12 (\checkmark) in D₂O at 25 °C and I = 1.0 (KCl). Also plotted for comparison are log $k_{ex} - pD$ data taken from R. S. Massey *et al*^[21] for the deuterium exchange reactions of triazolium salts **6a** (\bullet) and **6d** (\blacksquare). The solid lines show the fits of the data at ionic strength, I = 1.0, to Eqn. (3) except for **6d**^[21] for which data is fit to an equation allowing for only a first order dependence on DO⁻. For triazolium salt 11 and 12, extra datapoints (\triangle and ∇) were obtained in 2 M DCl (shown as open symbols on the same profiles, as for **6a** additional data points^[21] in 1.2 and 2 M DCl).

Figure 2. pD-rate profiles for the deuterium exchange reactions of the C(3)-proton of triazolium salts 13 (\diamond) and 14 (\diamond) in D₂O at 25 °C and I = 1.0 (KCl). Also plotted for comparison are log $k_{ex} - pD$ data taken from R. S. Massey *et al*^[21] for the deuterium exchange reactions of triazolium salts **6a** (\bullet) and **6d** (\blacksquare). The solid lines show the fits of the data to Eqn. (3) for **6a** and **14** and Eqn. (4) for **13**. For **6d**,^[21] the data is fit to an equation allowing for only a first order dependence on DO⁻.

Salt	$k_{\rm DO}({\rm M}^{-1}{\rm s}^{-1})^{\rm a}$	р <i>К</i> а ^{С3 с}	$K_{a}^{N}(M)^{d}$	pK _a ^N
11	$4.29 \ (\pm 0.13) \times 10^{8} \ ^{a}$	16.7	1.1 (± 0.3)	0.04
12	$2.71 \ (\pm 0.12) \times 10^{8} \ ^{a}$	16.9	1.3 (± 1.3)	0.11
13	$1.05~(\pm 0.05) \times 10^{8a}$	17.3	0.9 (± 0.4)	-0.05
14	$1.07~(\pm 0.03) \times 10^{8a}$	17.3	2.3 (± 1.6)	0.36
6a	$6.82 (\pm 0.25) \times 10^{8 \text{ b}}$	16.5 ^b	$1.5 (\pm 0.4)^{b}$	0.18 ^b
6d	$6.82 \ (\pm \ 0.13) \times 10^{7 \ b}$	17.5 ^b		

Table 1 Second order rate constants for deuteroxide-catalysed hydrogen-deuterium exchange at C(3) (k_{DO} , $M^{-1}s^{-1}$), carbon acid pK_a^{C3} and pK_a^{N} values in aqueous solution at 25°C and ionic strength, I = 1.0 (KCl).

^aValues of $k_{\rm DO}$ (M⁻¹s⁻¹) obtained by fitting log $k_{\rm ex} - pD$ data to Eqn. (2) or (3). ^bTaken from R. S. Massey *et al.*^{[21] c}p $K_{\rm a}^{\rm C3}$ values obtained by application of Eqn. (5). ^dValues of $K_{\rm a}^{\rm N}$ (M) obtained by fitting log $k_{\rm ex} - pD$ data to Eqn. (2) or (3).

Salt	$k_{\rm D2O}({ m s}^{-1})^{\rm a}$	$k_{\rm DO}' ({\rm M}^{-1}{\rm s}^{-1})^{\rm d}$
11	$2.0 \times 10^{-5} (\pm 3.8 \times 10^{-6})$	$1.2 \times 10^{10} (\pm 2.2 \times 10^9)$
12	$8.0 \times 10^{-6} \ (\pm 6.6 \times 10^{-6})$	$5.7 \times 10^9 (\pm 4.7 \times 10^9)$
14	$4.7 \times 10^{-6} \ (\pm 2.6 \times 10^{-6})$	$5.9 \times 10^9 (\pm 3.3 \times 10^9)$
6a	$6.1 \times 10^{-5} (\pm 3.6 \times 10^{-7})^{b}$	$3.3 \times 10^{10} (\pm 2.0 \times 10^9)$ ^b
13	$1.4 \times 10^{-4} (\pm 4.3 \times 10^{-5})^{\text{c}}$	

Table 2 Predicted rate constants for k_{D2O} , k_{DO} or k' based on kinetic fitting.

^aValues of k_{D2O} (s⁻¹) obtained by fitting log $k_{ex} - pD$ data to Eqn. (2). ^bTaken from R. S. Massey *et al.*^[21] ^cValue of k' (s⁻¹) obtained by fitting log $k_{ex} - pD$ data to Eqn. (4). ^dValues of k_{DO} (M⁻¹s⁻¹) obtained by fitting log $k_{ex} - pD$ data to Eqn. (3).