71 research outputs found

    Hidden Orbital Order in URu2Si2URu_{2}Si_{2}

    Full text link
    When matter is cooled from high temperatures, collective instabilities develop amongst its constituent particles that lead to new kinds of order. An anomaly in the specific heat is a classic signature of this phenomenon. Usually the associated order is easily identified, but sometimes its nature remains elusive. The heavy fermion metal URu2Si2URu_2Si_2 is one such example, where the order responsible for the sharp specific heat anomaly at T0=17KT_0=17 K has remained unidentified despite more than seventeen years of effort. In URu2Si2URu_{2}Si_{2}, the coexistence of large electron-electron repulsion and antiferromagnetic fluctuations in URu2Si2URu_2Si_2 leads to an almost incompressible heavy electron fluid, where anisotropically paired quasiparticle states are energetically favored. In this paper we use these insights to develop a detailed proposal for the hidden order in URu2Si2URu_2Si_2. We show that incommensurate orbital antiferromagnetism, associated with circulating currents between the uranium ions, can account for the local fields and entropy loss observed at the 17K17 K transition; furthermore we make detailed predictions for neutron scattering measurements

    practice of mechanical ventilation in cardiac arrest patients and effects of targeted temperature management a substudy of the targeted temperature management trial

    Get PDF
    Aims: Mechanical ventilation practices in patients with cardiac arrest are not well described. Also, the effect of temperature on mechanical ventilation settings is not known. The aims of this study were 1) to describe practice of mechanical ventilation and its relation with outcome 2) to determine effects of different target temperatures strategies (33 °C versus 36 °C) on mechanical ventilation settings. Methods: This is a substudy of the TTM-trial in which unconscious survivors of a cardiac arrest due to a cardiac cause were randomized to two TTM strategies, 33 °C (TTM33) and 36 °C (TTM36). Mechanical ventilation data were obtained at three time points: 1) before TTM; 2) at the end of TTM (before rewarming) and 3) after rewarming. Logistic regression was used to determine an association between mechanical ventilation variables and outcome. Repeated-measures mixed modelling was performed to determine the effect of TTM on ventilation settings. Results: Mechanical ventilation data was available for 567 of the 950 TTM patients. Of these, 81% was male with a mean (SD) age of 64 (12) years. At the end of TTM median tidal volume was 7.7 ml/kg predicted body weight (PBW)(6.4–8.7) and 60% of patients were ventilated with a tidal volume ≤ 8 ml/kg PBW. Median PEEP was 7.7cmH2O (6.4–8.7) and mean driving pressure was 14.6 cmH2O (±4.3). The median FiO2 fraction was 0.35 (0.30–0.45). Multivariate analysis showed an independent relationship between increased respiratory rate and 28-day mortality. TTM33 resulted in lower end-tidal CO2 (Pgroup = 0.0003) and higher alveolar dead space fraction (Pgroup = 0.003) compared to TTM36, while PCO2 levels and respiratory minute volume were similar between groups. Conclusions: In the majority of the cardiac arrest patients, protective ventilation settings are applied, including low tidal volumes and driving pressures. High respiratory rate was associated with mortality. TTM33 results in lower end-tidal CO2 levels and a higher alveolar dead space fraction compared to TTTM36

    Fermi surface instability at the hidden-order transition of URu2Si2

    Full text link
    Solids with strong electron correlations generally develop exotic phases of electron matter at low temperatures. Among such systems, the heavy-fermion semi-metal URu2Si2 presents an enigmatic transition at To = 17.5 K to a `hidden order' state whose order parameter remains unknown after 23 years of intense research. Various experiments point to the reconstruction and partial gapping of the Fermi surface when the hidden-order establishes. However, up to now, the question of how this transition affects the electronic spectrum at the Fermi surface has not been directly addressed by a spectroscopic probe. Here we show, using angle-resolved photoemission spectroscopy, that a band of heavy quasi-particles drops below the Fermi level upon the transition to the hidden-order state. Our data provide the first direct evidence of a large reorganization of the electronic structure across the Fermi surface of URu2Si2 occurring during this transition, and unveil a new kind of Fermi-surface instability in correlated electron systemsComment: 15 pages, 5 figure

    Assessment of explanatory models of mental illness: effects of patient and interviewer characteristics

    Get PDF
    Background: Explanatory models (EMs) refer to patients’ causal attributions of illness and have been shown to affect treatment preference and outcome. Reliable and valid assessment of EMs may be hindered by interviewer and respondent disparities on certain demographic characteristics, such as ethnicity. The present study examined (a) whether ethnic minority patients reported different EMs to ethnically similar interviewers in comparison with those with a different ethnicity, and (b) whether this effect was related to respondents’ social desirability, the perceived rapport with the interviewer and level of uncertainty toward their EMs. Methods: A total of 55 patients of Turkish and Moroccan origins with mood and anxiety disorders were randomly assigned to ethnically similar or dissimilar interviewers. EMs were assessed, using a semi-structured interview, across 11 different categories of causes. Results: Participants who were interviewed by an ethnically similar interviewer perceived interpersonal, victimization and religious/mystical causes as more important, whereas interviews by ethnically dissimilar interviewers generated higher scores on medical causes. These effects were not mediated by the perceived rapport with the interviewer, and social desirability had a modest impact on the results. Higher uncertainty among participants toward medical and religious/mystical causes seemed to be associated with greater adjustment in the report of these EMs. Conclusion: The findings have significant implications for interviewer selection in epidemiological research and clinical practice

    Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions

    Get PDF
    Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell--based biorefineries.This study was supported by the Portuguese Foundation for Science and Technology (FCT) by the strategic funding of UID/BIO/04469/2013 unit, MIT Portugal Program (Ph.D. grant PD/BD/128247/ 2016 to Joana T. Cunha), Ph.D. grant SFRH/BD/130739/2017 to Carlos E. Costa, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004), YeasTempTation (ERA-IB-2-6/0001/2014), and MultiBiorefinery project (POCI-01-0145-FEDER-016403). Funding by the Institute for Bioengineering and Biosciences (IBB) from FCT (UID/BIO/04565/2013) and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317) was also receiveinfo:eu-repo/semantics/publishedVersio

    Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Summary: Background Documentation of patterns and long-term trends in mortality in young people, which reflect huge changes in demographic and social determinants of adolescent health, enables identification of global investment priorities for this age group. We aimed to analyse data on the number of deaths, years of life lost, and mortality rates by sex and age group in people aged 10–24 years in 204 countries and territories from 1950 to 2019 by use of estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We report trends in estimated total numbers of deaths and mortality rate per 100 000 population in young people aged 10–24 years by age group (10–14 years, 15–19 years, and 20–24 years) and sex in 204 countries and territories between 1950 and 2019 for all causes, and between 1980 and 2019 by cause of death. We analyse variation in outcomes by region, age group, and sex, and compare annual rate of change in mortality in young people aged 10–24 years with that in children aged 0–9 years from 1990 to 2019. We then analyse the association between mortality in people aged 10–24 years and socioeconomic development using the GBD Socio-demographic Index (SDI), a composite measure based on average national educational attainment in people older than 15 years, total fertility rate in people younger than 25 years, and income per capita. We assess the association between SDI and all-cause mortality in 2019, and analyse the ratio of observed to expected mortality by SDI using the most recent available data release (2017). Findings In 2019 there were 1·49 million deaths (95% uncertainty interval 1·39–1·59) worldwide in people aged 10–24 years, of which 61% occurred in males. 32·7% of all adolescent deaths were due to transport injuries, unintentional injuries, or interpersonal violence and conflict; 32·1% were due to communicable, nutritional, or maternal causes; 27·0% were due to non-communicable diseases; and 8·2% were due to self-harm. Since 1950, deaths in this age group decreased by 30·0% in females and 15·3% in males, and sex-based differences in mortality rate have widened in most regions of the world. Geographical variation has also increased, particularly in people aged 10–14 years. Since 1980, communicable and maternal causes of death have decreased sharply as a proportion of total deaths in most GBD super-regions, but remain some of the most common causes in sub-Saharan Africa and south Asia, where more than half of all adolescent deaths occur. Annual percentage decrease in all-cause mortality rate since 1990 in adolescents aged 15–19 years was 1·3% in males and 1·6% in females, almost half that of males aged 1–4 years (2·4%), and around a third less than in females aged 1–4 years (2·5%). The proportion of global deaths in people aged 0–24 years that occurred in people aged 10–24 years more than doubled between 1950 and 2019, from 9·5% to 21·6%. Interpretation Variation in adolescent mortality between countries and by sex is widening, driven by poor progress in reducing deaths in males and older adolescents. Improving global adolescent mortality will require action to address the specific vulnerabilities of this age group, which are being overlooked. Furthermore, indirect effects of the COVID-19 pandemic are likely to jeopardise efforts to improve health outcomes including mortality in young people aged 10–24 years. There is an urgent need to respond to the changing global burden of adolescent mortality, address inequities where they occur, and improve the availability and quality of primary mortality data in this age group

    Genome sequences of a novel Vietnamese bat bunyavirus

    Get PDF
    To document the viral zoonotic risks in Vietnam, fecal samples were systematically collected from a number of mammals in southern Vietnam and subjected to agnostic deep sequencing. We describe here novel Vietnamese bunyavirus sequences detected in bat feces. The complete L and S segments from 14 viruses were determined

    Complete genome characterization of two wild-type measles viruses from Vietnamese infants during the 2014 outbreak

    Get PDF
    A large measles virus outbreak occurred across Vietnam in 2014. We identified and obtained complete measles virus genomes in stool samples collected from two diarrheal pediatric patients in Dong Thap Province. These are the first complete genome sequences of circulating measles viruses in Vietnam during the 2014 measles outbreak

    Feedback insensitive integrated semiconductor laser

    Get PDF
    Hoe fotonische chips ongevoelig te maken voor reflectie van lich
    corecore