420 research outputs found

    Work-related psychosocial events as triggers of sick leave - results from a Swedish case-crossover study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although illness is an important cause of sick leave, it has also been suggested that non-medical risk factors may influence this association. If such factors impact on the period of decision making, they should be considered as triggers. Yet, there is no empirical support available.</p> <p>The aim was to investigate whether recent exposure to work-related psychosocial events can trigger the decision to report sick when ill.</p> <p>Methods</p> <p>A case-crossover design was applied to 546 sick-leave spells, extracted from a Swedish cohort of 1 430 employees with a 3-12 month follow-up of new sick-leave spells. Exposure in a case period corresponding to an induction period of one or two days was compared with exposure during control periods sampled from workdays during a two-week period prior to sick leave for the same individual. This was done according to the matched-pair interval and the usual frequency approaches. Results are presented as odds ratios (OR) with 95% confidence intervals (CI).</p> <p>Results</p> <p>Most sick-leave spells happened in relation to acute, minor illnesses that substantially reduced work ability. The risk of taking sick leave was increased when individuals had recently been exposed to problems in their relationship with a superior (OR 3.63; CI 1.44-9.14) or colleagues (OR 4.68; CI 1.43-15.29). Individuals were also more inclined to report sick on days when they expected a very stressful work situation than on a day when they were not under such stress (OR 2.27; CI 1.40-3.70).</p> <p>Conclusions</p> <p>Exposure to problems in workplace relationships or a stressful work situation seems to be able to trigger reporting sick. Psychosocial work-environmental factors appear to have a short-term effect on individuals when deciding to report sick.</p

    Structures and waves in a nonlinear heat-conducting medium

    Full text link
    The paper is an overview of the main contributions of a Bulgarian team of researchers to the problem of finding the possible structures and waves in the open nonlinear heat conducting medium, described by a reaction-diffusion equation. Being posed and actively worked out by the Russian school of A. A. Samarskii and S.P. Kurdyumov since the seventies of the last century, this problem still contains open and challenging questions.Comment: 23 pages, 13 figures, the final publication will appear in Springer Proceedings in Mathematics and Statistics, Numerical Methods for PDEs: Theory, Algorithms and their Application

    Home visits by neighborhood Mentor Mothers provide timely recovery from childhood malnutrition in South Africa: results from a randomized controlled trial

    Get PDF
    Abstract Background Child and infant malnourishment is a significant and growing problem in the developing world. Malnourished children are at high risk for negative health outcomes over their lifespans. Philani, a paraprofessional home visiting program, was developed to improve childhood nourishment. The objective of this study is to evaluate whether the Philani program can rehabilitate malnourished children in a timely manner. Methods Mentor Mothers were trained to conduct home visits. Mentor Mothers went from house to house in assigned neighborhoods, weighed children age 5 and younger, and recruited mother-child dyads where there was an underweight child. Participating dyads were assigned in a 2:1 random sequence to the Philani intervention condition (n = 536) or a control condition (n = 252). Mentor Mothers visited dyads in the intervention condition for one year, supporting mothers' problem-solving around nutrition. All children were weighed by Mentor Mothers at baseline and three, six, nine and twelve month follow-ups. Results By three months, children in the intervention condition were five times more likely to rehabilitate (reach a healthy weight for their ages) than children in the control condition. Throughout the course of the study, 43% (n = 233 of 536) of children in the intervention condition were rehabilitated while 31% (n = 78 of 252) of children in the control condition were rehabilitated. Conclusions Paraprofessional Mentor Mothers are an effective strategy for delivering home visiting programs by providing the knowledge and support necessary to change the behavior of families at risk

    BABAR: an R package to simplify the normalisation of common reference design microarray-based transcriptomic datasets

    Get PDF
    Background: The development of DNA microarrays has facilitated the generation of hundreds of thousands of transcriptomic datasets. The use of a common reference microarray design allows existing transcriptomic data to be readily compared and re-analysed in the light of new data, and the combination of this design with large datasets is ideal for 'systems' level analyses. One issue is that these datasets are typically collected over many years and may be heterogeneous in nature, containing different microarray file formats and gene array layouts, dye-swaps, and showing varying scales of log(2)- ratios of expression between microarrays. Excellent software exists for the normalisation and analysis of microarray data but many data have yet to be analysed as existing methods struggle with heterogeneous datasets; options include normalising microarrays on an individual or experimental group basis. Our solution was to develop the Batch Anti-Banana Algorithm in R (BABAR) algorithm and software package which uses cyclic loess to normalise across the complete dataset. We have already used BABAR to analyse the function of Salmonella genes involved in the process of infection of mammalian cells. Results: The only input required by BABAR is unprocessed GenePix or BlueFuse microarray data files. BABAR provides a combination of 'within' and 'between' microarray normalisation steps and diagnostic boxplots. When applied to a real heterogeneous dataset, BABAR normalised the dataset to produce a comparable scaling between the microarrays, with the microarray data in excellent agreement with RT-PCR analysis. When applied to a real non-heterogeneous dataset and a simulated dataset, BABAR's performance in identifying differentially expressed genes showed some benefits over standard techniques. Conclusions: BABAR is an easy-to-use software tool, simplifying the simultaneous normalisation of heterogeneous two-colour common reference design cDNA microarray-based transcriptomic datasets. We show BABAR transforms real and simulated datasets to allow for the correct interpretation of these data, and is the ideal tool to facilitate the identification of differentially expressed genes or network inference analysis from transcriptomic datasets

    A search for quantitative trait loci controlling within-individual variation of physical activity traits in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years it has become increasingly apparent that physical inactivity can predispose individuals to a host of health problems. While many studies have analyzed the effect of various environmental factors on activity, we know much less about the genetic control of physical activity. Some studies in mice have discovered quantitative trait loci (QTL) influencing various physical activity traits, but mostly have analyzed inter-individual variation rather than variation in activity within individuals over time. We conducted a genome scan to identify QTLs controlling the distance, duration, and time run by mice over seven consecutive three-day intervals in an F<sub>2 </sub>population created by crossing two inbred strains (C57L/J and C3H/HeJ) that differed widely (average of nearly 300%) in their activity levels. Our objectives were (a) to see if we would find QTLs not originally discovered in a previous investigation that assessed these traits over the entire 21-day period and (b) to see if some of these QTLs discovered might affect the activity traits only in the early or in the late time intervals.</p> <p>Results</p> <p>This analysis uncovered 39 different QTLs, over half of which were new. Some QTLs affected the activity traits only in the early time intervals and typically exhibited significant dominance effects whereas others affected activity only in the later age intervals and exhibited less dominance. We also analyzed the regression slopes of the activity traits over the intervals, and found several QTLs affecting these traits that generally mapped to unique genomic locations.</p> <p>Conclusions</p> <p>It was concluded that the genetic architecture of physical activity in mice is much more complicated than has previously been recognized, and may change considerably depending on the age at which various activity measures are assessed.</p

    Region-Specific Microstructure in the Neonatal Ventricles of a Porcine Model

    Get PDF
    © 2018, Biomedical Engineering Society. The neonate transitions from placenta-derived oxygen, to supply from the pulmonary system, moments after birth. This requires a series of structural developments to divert more blood through the right heart and onto the lungs, with the tissue quickly remodelling to the changing ventricular workload. In some cases, however, the heart structure does not fully develop causing poor circulation and inefficient oxygenation, which is associated with an increase in mortality and morbidity. This study focuses on developing an enhanced knowledge of the 1-day old heart, quantifying the region-specific microstructural parameters of the tissue. This will enable more accurate mathematical and computational simulations of the young heart. Hearts were dissected from 12, 1-day-old deceased Yorkshire piglets (mass: 2.1–2.4kg, length: 0.38–0.51m), acquired from a breeding farm. Evans blue dye was used to label the heart equator and to demarcate the left and right ventricle free walls. Two hearts were used for three-dimensional diffusion-tensor magnetic resonance imaging, to quantify the fractional anisotropy (FA). The remaining hearts were used for two-photon excited fluorescence and second-harmonic generation microscopy, to quantify the cardiomyocyte and collagen fibril structures within the anterior and posterior aspects of the right and left ventricles. FA varied significantly across both ventricles, with the greatest in the equatorial region, followed by the base and apex. The FA in each right ventricular region was statistically greater than that in the left. Cardiomyocyte and collagen fibre rotation was greatest in the anterior wall of both ventricles, with less dispersion when compared to the posterior walls. In defining these key parameters, this study provides a valuable insight into the 1-day-old heart that will provide a valuable platform for further investigation the normal and abnormal heart using mathematical and computational models

    Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3D image intensity approaches to investigation of structural anisotropy in explanted rat hearts

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) can through the two methods 3D FLASH and diffusion tensor imaging (DTI) give complementary information on the local orientations of cardiomyocytes and their laminar arrays. Methods: Eight explanted rat hearts were perfused with Gd-DTPA contrast agent and fixative and imaged in a 9.4T magnet by two types of acquisition: 3D fast low angle shot (FLASH) imaging, voxels 50 × 50 × 50 μm, and 3D spin echo DTI with monopolar diffusion gradients of 3.6 ms duration at 11.5 ms separation, voxels 200 × 200 × 200 μm. The sensitivity of each approach to imaging parameters was explored. Results:The FLASH data showed laminar alignments of voxels with high signal, in keeping with the presumed predominance of contrast in the interstices between sheetlets. It was analysed, using structure-tensor (ST) analysis, to determine the most (v 1 ST ), intermediate (v 2 ST ) and least (v 3 ST ) extended orthogonal directions of signal continuity. The DTI data was analysed to determine the most (e 1 DTI ), intermediate (e 2 DTI ) and least (e 3 DTI ) orthogonal eigenvectors of extent of diffusion. The correspondence between the FLASH and DTI methods was measured and appraised. The most extended direction of FLASH signal (v 1 ST ) agreed well with that of diffusion (e 1 DTI ) throughout the left ventricle (representative discrepancy in the septum of 13.3 ± 6.7°: median ± absolute deviation) and both were in keeping with the expected local orientations of the long-axis of cardiomyocytes. However, the orientation of the least directions of FLASH signal continuity (v 3 ST ) and diffusion (e 3 ST ) showed greater discrepancies of up to 27.9 ± 17.4°. Both FLASH (v 3 ST ) and DTI (e 3 DTI ) where compared to directly measured laminar arrays in the FLASH images. For FLASH the discrepancy between the structure-tensor calculated v 3 ST and the directly measured FLASH laminar array normal was of 9 ± 7° for the lateral wall and 7 ± 9° for the septum (median ± inter quartile range), and for DTI the discrepancy between the calculated v 3 DTI and the directly measured FLASH laminar array normal was 22 ± 14° and 61 ± 53.4°. DTI was relatively insensitive to the number of diffusion directions and to time up to 72 hours post fixation, but was moderately affected by b-value (which was scaled by modifying diffusion gradient pulse strength with fixed gradient pulse separation). Optimal DTI parameters were b = 1000 mm/s2 and 12 diffusion directions. FLASH acquisitions were relatively insensitive to the image processing parameters explored. Conclusions: We show that ST analysis of FLASH is a useful and accurate tool in the measurement of cardiac microstructure. While both FLASH and the DTI approaches appear promising for mapping of the alignments of myocytes throughout myocardium, marked discrepancies between the cross myocyte anisotropies deduced from each method call for consideration of their respective limitations

    Structures of SRP54 and SRP19, the Two Proteins that Organize the Ribonucleic Core of the Signal Recognition Particle from Pyrococcus furiosus

    Get PDF
    In all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu). The 2.5 Å resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely α-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 Å resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19•SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP RNA in adopting the conformation required for its optimal interaction with the essential subunit SRP54, and proper assembly of a functional SRP

    Excess cardiovascular risk in diabetic women: a case for intensive treatment.

    Get PDF
    Diabetes is a common and rapidly growing disease that affects more than 380 million people worldwide and is an established risk factor for cardiovascular disease with differential effects on women compared to men. While the general population of women, particularly young women, has more favourable cardiovascular risk profiles than men, this protective effect has been shown to be lost or even reversed in diabetic women. Several studies have demonstrated a significant diabetes-associated excess risk of cardiovascular disease in women. Sex-specific differences in risk factors associated with diabetes and their management may be responsible for the relative excess cardiovascular risk in women with diabetes. Diabetic women need intensive treatment in order to optimize management of cardiovascular risk factors. Further studies are needed to elucidate the mechanisms underlying the excess cardiovascular risk in diabetic women in order to tailor prevention and treatment strategies
    corecore