19 research outputs found

    Analysis of the Expression of Repetitive DNA Elements in Osteosarcoma

    Get PDF
    Osteosarcoma (OS) is a rare malignant bone tumor. It affects mostly young persons and has poor outcome with the present treatment. No improvement was observed since the introduction of chemotherapy. The better understanding of osteosarcoma development could indicate better management strategy. Repetitive DNA elements were found to play a role in cancer mechanism especially in epithelial tumors but not yet analyzed in osteosarcoma. We conducted the study to analyse the expression profile of repetitive elements (RE) in osteosarcoma. Methods: Fresh bone paired (tumor and normal bone) samples were obtained from excised parts of tumors of 18 patients with osteosarcoma. We performed sequencing of RNA extracted from 36 samples (18 tumor tissues and 18 normal bone for controls), mapped raw reads to the human genome and identified the REs. EdgeR package was used to analyse the difference in expression of REs between osteosarcoma and normal bone. Results: 82 REs were found differentially expressed (FDR < 0.05) between osteosarcoma and normal bone. Out of all significantly changed REs, 35 were upregulated and 47 were downregulated. HERVs (THE1C-int, LTR5, MER57F and MER87B) and satellite elements (HSATII, ALR-alpha) were the most significantly differential expressed elements between osteosarcoma and normal tissues. These results suggest significant impact of REs in the osteosarcoma. The role of REs should be further studied to understand the mechanism they have in the genesis of osteosarcoma

    Large scale variation in the rate of germ-line de novo mutation, base composition, divergence and diversity in humans

    Get PDF
    It has long been suspected that the rate of mutation varies across the human genome at a large scale based on the divergence between humans and other species. However, it is now possible to directly investigate this question using the large number of de novo mutations (DNMs) that have been discovered in humans through the sequencing of trios. We investi- gate a number of questions pertaining to the distribution of mutations using more than 130,000 DNMs from three large datasets. We demonstrate that the amount and pattern of variation differs between datasets at the 1MB and 100KB scales probably as a consequence of differences in sequencing technology and processing. In particular, datasets show differ- ent patterns of correlation to genomic variables such as replication time. Never-the-less there are many commonalities between datasets, which likely represent true patterns. We show that there is variation in the mutation rate at the 100KB, 1MB and 10MB scale that can- not be explained by variation at smaller scales, however the level of this variation is modest at large scales–at the 1MB scale we infer that ~90% of regions have a mutation rate within 50% of the mean. Different types of mutation show similar levels of variation and appear to vary in concert which suggests the pattern of mutation is relatively constant across the genome. We demonstrate that variation in the mutation rate does not generate large-scale variation in GC-content, and hence that mutation bias does not maintain the isochore struc- ture of the human genome. We find that genomic features explain less than 40% of the explainable variance in the rate of DNM. As expected the rate of divergence between spe- cies is correlated to the rate of DNM. However, the correlations are weaker than expected if all the variation in divergence was due to variation in the mutation rate. We provide evidence that this is due the effect of biased gene conversion on the probability that a mutation will become fixed. In contrast to divergence, we find that most of the variation in diversity can be explained by variation in the mutation rate. Finally, we show that the correlation between divergence and DNM density declines as increasingly divergent species are considered

    Feasibility of establishing a rehabilitation programme in a Vietnamese intensive care unit

    Get PDF
    Increasing numbers of people are surviving critical illness throughout the world, but survivorship is associated with long-term disability. In high-income settings physical rehabilitation is commonly employed to counter this and improve outcomes. These utilize highly-trained multidisciplinary teams and are unavailable and unaffordable in most low and middle income countries (LMICs). We aimed to design a sustainable intensive care unit (ICU) rehabilitation program and to evaluate its feasibility in a LMIC setting. In this project patients, care-givers and experts co-designed an innovative rehabilitation programme that can be delivered by non-expert ICU staff and family care-givers in a LMIC. We implemented this programme in adult patient with patients with tetanus at the Hospital for Tropical Diseases, Ho Chi Minh City over a 5-month period, evaluating the programme's acceptability, enablers and barriers. A 6-phase programme was designed, supported by written and video material. The programme was piloted in total of 30 patients. Rehabilitation was commenced a median 14 (inter quartile range (IQR) 10-18) days after admission. Each patient received a median of 25.5 (IQR 22.8-34.8) rehabilitation sessions out of a median 27 (22.8-35) intended (prescribed) sessions. There were no associated adverse events. Patients and staff found rehabilitation to be beneficial, enhanced relationships between carers, patients and staff and was deemed to be a positive step towards recovery and return to work. The main barrier was staff time. The programme was feasible for patients with tetanus and viewed positively by staff and participants. Staff time was identified as the major barrier to ongoing implementation

    A spiking temporal-difference learning model based on dopamine-modulated plasticity

    Get PDF
    The burden of dengue continues to increase globally, with an estimated 100 million clinically apparent infections occurring each year. Although most dengue infections are asymptomatic, patients can present with a wide spectrum of clinical symptoms ranging from mild febrile illness through to severe manifestations of bleeding, organ impairment, and hypovolaemic shock due to a systemic vascular leak syndrome. Clinical diagnosis of dengue and identification of which patients are likely to develop severe disease remain challenging. This study aims to improve diagnosis and clinical management through approaches designed a) to differentiate between dengue and other common febrile illness within 72 h of fever onset, and b) among patients with dengue to identify markers that are predictive of the likelihood of evolving to a more severe disease course.This is a prospective multi-centre observational study aiming to enrol 7-8000 participants aged ≥ 5 years presenting with a febrile illness consistent with dengue to outpatient health facilities in 8 countries across Asia and Latin America. Patients presenting within 72 h of fever onset who do not exhibit signs of severe disease are eligible for the study. A broad range of clinical and laboratory parameters are assessed daily for up to 6 days during the acute illness, and also at a follow up visit 1 week later.Data from this large cohort of patients, enrolled early with undifferentiated fever, will be used to develop a practical diagnostic algorithm and a robust clinical case definition for dengue. Additionally, among patients with confirmed dengue we aim to identify simple clinical and laboratory parameters associated with progression to a more severe disease course. We will also investigate early virological and serological correlates of severe disease, and examine genetic associations in this large heterogeneous cohort. In addition the results will be used to assess the new World Health Organization classification scheme for dengue in practice, and to update the guidelines for "Integrated Management of Childhood Illness" used in dengue-endemic countries.NCT01550016 . Registration Date: March 7, 2012
    corecore