43 research outputs found

    Beneficial effect of Sparassis crispa on stroke through activation of Akt/eNOS pathway in brain of SHRSP

    Get PDF
    Sparassis crispa (S. crispa) is a mushroom used as a natural medicine that recently became cultivatable in Japan. In this study, we investigated not only the preventive effects of S. crispa against stroke and hypertension in stroke-prone spontaneously hypertensive rats (SHRSP) but also the mechanism involved by using studies of the cerebral cortex at a young age. Six-week-old male SHRSP were divided into 2 groups, a control group and an S. crispa group administered 1.5% S. crispa in feed, and we then observed their survival. In addition, rats of the same age were treated with 1.5% S. crispa for 4 weeks and we measured body weight, blood pressure, blood flow from the tail, NOx production, and the levels of expression of several proteins in the cerebral cortex by western blot analysis. Our results showed that the S. crispa group had a delayed incidence of stroke and death and significantly decreased blood pressure and increased blood flow after the administration. Moreover, the quantity of urinary excretion and the nitrate/nitrite concentration in cerebral tissue were higher than those of control SHRSP rats. In the cerebral cortex, phosphor-eNOS (Ser1177) and phosphor-Akt (Ser473) in S. crispa-treated SHRSP were increased compared with those of control SHRSP rats. In conclusion, S. crispa could ameliorate cerebrovascular endothelial dysfunction by promoting recovery of Akt-dependent eNOS phosphorylation and increasing NO production in the cerebral cortex. S. crispa may be useful for preventing stroke and hypertension

    The natural polyamines and the immune system

    No full text

    Metabolomics Based on MS in Mice with Diet-Induced Obesity and Type 2 Diabetes Mellitus: the Effect of Vildagliptin, Metformin, and Their Combination

    No full text
    Type 2 diabetes mellitus (T2DM) is a major epidemiological problem. Metformin and vildagliptin are well-established antidiabetic drugs. The aim of the study was to evaluate the changes of plasma metabolic profile induced by a high-fat diet (HFD) and subsequent oral administration of metformin, vildagliptin, and their combination in a mouse model of diet-induced obesity (DIO)/T2DM analyzed using quadrupole-time-of-flight mass spectrometry (qTOF-MS). Metformin treatment increased the levels of butyrylcarnitine and acylcarnitine C18:1 concentrations and decreased the levels of isoleucine concentrations compared to untreated HFD mice. Vildagliptin treatment increased levels of butyrylcarnitine and acetylcarnitine. In summary, our metabolomics study revealed multiple differences between obese diabetic HFD mice and lean standard chow diet (SCD) mice, which were partially modifiable by subsequent metformin and vildagliptin treatment
    corecore