158 research outputs found

    Restrictions of generalized Verma modules to symmetric pairs

    Full text link
    We initiate a new line of investigation on branching problems for generalized Verma modules with respect to complex reductive symmetric pairs (g,k). Here we note that Verma modules of g may not contain any simple module when restricted to a reductive subalgebra k in general. In this article, using the geometry of K_C orbits on the generalized flag variety G_C/P_C, we give a necessary and sufficient condition on the triple (g,k, p) such that the restriction X|_k always contains simple k-modules for any g-module XX lying in the parabolic BGG category O^p attached to a parabolic subalgebra p of g. Formulas are derived for the Gelfand-Kirillov dimension of any simple k-module occurring in a simple generalized Verma module of g. We then prove that the restriction X|_k is multiplicity-free for any generic g-module X \in O if and only if (g,k) is isomorphic to a direct sum of (A_n,A_{n-1}), (B_n,D_n), or (D_{n+1},B_n). We also see that the restriction X|_k is multiplicity-free for any symmetric pair (g, k) and any parabolic subalgebra p with abelian nilradical and for any generic g-module X \in O^p. Explicit branching laws are also presented.Comment: 31 pages, To appear in Transformation Group

    Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea

    Get PDF
    Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax

    Ortho2ExpressMatrix—a web server that interprets cross-species gene expression data by gene family information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of gene families is pivotal for the understanding of gene evolution across different organisms and such phylogenetic background is often used to infer biochemical functions of genes. Modern high-throughput experiments offer the possibility to analyze the entire transcriptome of an organism; however, it is often difficult to deduct functional information from that data.</p> <p>Results</p> <p>To improve functional interpretation of gene expression we introduce Ortho2ExpressMatrix, a novel tool that integrates complex gene family information, computed from sequence similarity, with comparative gene expression profiles of two pre-selected biological objects: gene families are displayed with two-dimensional matrices. Parameters of the tool are object type (two organisms, two individuals, two tissues, etc.), type of computational gene family inference, experimental meta-data, microarray platform, gene annotation level and genome build. Family information in Ortho2ExpressMatrix bases on computationally different protein family approaches such as EnsemblCompara, InParanoid, SYSTERS and Ensembl Family. Currently, respective all-against-all associations are available for five species: human, mouse, worm, fruit fly and yeast. Additionally, microRNA expression can be examined with respect to miRBase or TargetScan families. The visualization, which is typical for Ortho2ExpressMatrix, is performed as matrix view that displays functional traits of genes (differential expression) as well as sequence similarity of protein family members (BLAST e-values) in colour codes. Such translations are intended to facilitate the user's perception of the research object.</p> <p>Conclusions</p> <p>Ortho2ExpressMatrix integrates gene family information with genome-wide expression data in order to enhance functional interpretation of high-throughput analyses on diseases, environmental factors, or genetic modification or compound treatment experiments. The tool explores differential gene expression in the light of orthology, paralogy and structure of gene families up to the point of ambiguity analyses. Results can be used for filtering and prioritization in functional genomic, biomedical and systems biology applications. The web server is freely accessible at <url>http://bioinf-data.charite.de/o2em/cgi-bin/o2em.pl</url>.</p

    Proteinortho: Detection of (Co-)orthologs in large-scale analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Orthology analysis is an important part of data analysis in many areas of bioinformatics such as comparative genomics and molecular phylogenetics. The ever-increasing flood of sequence data, and hence the rapidly increasing number of genomes that can be compared simultaneously, calls for efficient software tools as brute-force approaches with quadratic memory requirements become infeasible in practise. The rapid pace at which new data become available, furthermore, makes it desirable to compute genome-wide orthology relations for a given dataset rather than relying on relations listed in databases.</p> <p>Results</p> <p>The program <monospace>Proteinortho</monospace> described here is a stand-alone tool that is geared towards large datasets and makes use of distributed computing techniques when run on multi-core hardware. It implements an extended version of the reciprocal best alignment heuristic. We apply <monospace>Proteinortho</monospace> to compute orthologous proteins in the complete set of all 717 eubacterial genomes available at NCBI at the beginning of 2009. We identified thirty proteins present in 99% of all bacterial proteomes.</p> <p>Conclusions</p> <p><monospace>Proteinortho</monospace> significantly reduces the required amount of memory for orthology analysis compared to existing tools, allowing such computations to be performed on off-the-shelf hardware.</p

    Hospital Networks and the Dispersal of Hospital-Acquired Pathogens by Patient Transfer

    Get PDF
    Hospital-acquired infections (HAI) are often seen as preventable incidents that result from unsafe practices or poor hospital hygiene. This however ignores the fact that transmissibility is not only a property of the causative organisms but also of the hosts who can translocate bacteria when moving between hospitals. In an epidemiological sense, hospitals become connected through the patients they share. We here postulate that the degree of hospital connectedness crucially influences the rates of infections caused by hospital-acquired bacteria. To test this hypothesis, we mapped the movement of patients based on the UK-NHS Hospital Episode Statistics and observed that the proportion of patients admitted to a hospital after a recent episode in another hospital correlates with the hospital-specific incidence rate of MRSA bacteraemia as recorded by mandatory reporting. We observed a positive correlation between hospital connectedness and MRSA bacteraemia incidence rate that is significant for all financial years since 2001 except for 2008–09. All years combined, this correlation is positive and significantly different from zero (partial correlation coefficient r = 0.33 (0.28 to 0.38)). When comparing the referral pattern for English hospitals with referral patterns observed in the Netherlands, we predict that English hospitals more likely see a swifter and more sustained spread of HAIs. Our results indicate that hospitals cannot be viewed as individual units but rather should be viewed as connected elements of larger modular networks. Our findings stress the importance of cooperative effects that will have a bearing on the planning of health care systems, patient management and hospital infection control

    Genome-Wide Comparative Gene Family Classification

    Get PDF
    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species

    BranchClust: a phylogenetic algorithm for selecting gene families

    Get PDF
    BACKGROUND: Automated methods for assembling families of orthologous genes include those based on sequence similarity scores and those based on phylogenetic approaches. The first are easy to automate but usually they do not distinguish between paralogs and orthologs or have restriction on the number of taxa. Phylogenetic methods often are based on reconciliation of a gene tree with a known rooted species tree; a limitation of this approach, especially in case of prokaryotes, is that the species tree is often unknown, and that from the analyses of single gene families the branching order between related organisms frequently is unresolved. RESULTS: Here we describe an algorithm for the automated selection of orthologous genes that recognizes orthologous genes from different species in a phylogenetic tree for any number of taxa. The algorithm is capable of distinguishing complete (containing all taxa) and incomplete (not containing all taxa) families and recognizes in- and outparalogs. The BranchClust algorithm is implemented in Perl with the use of the BioPerl module for parsing trees and is freely available at . CONCLUSION: BranchClust outperforms the Reciprocal Best Blast hit method in selecting more sets of putatively orthologous genes. In the test cases examined, the correctness of the selected families and of the identified in- and outparalogs was confirmed by inspection of the pertinent phylogenetic trees

    Comparative Geno-Plasticity Analysis of Mycoplasma bovis HB0801 (Chinese Isolate)

    Get PDF
    Mycoplasma bovis pneumonia in cattle has been epidemic in China since 2008. To investigate M. bovis pathogenesis, we completed genome sequencing of strain HB0801 isolated from a lesioned bovine lung from Hubei, China. The genomic plasticity was determined by comparing HB0801 with M. bovis strain ATCC¼ 25523ℱ/PG45 from cow mastitis milk, Chinese strain Hubei-1 from lesioned lung tissue, and 16 other Mycoplasmas species. Compared to PG45, the genome size of HB0801 was reduced by 11.7 kb. Furthermore, a large chromosome inversion (580 kb) was confirmed in all Chinese isolates including HB0801, HB1007, a strain from cow mastitis milk, and Hubei-1. In addition, the variable surface lipoproteins (vsp) gene cluster existed in HB0801, but contained less than half of the genes, and had poor identity to that in PG45, but they had conserved structures. Further inter-strain comparisons revealed other mechanisms of gene acquisition and loss in HB0801 that primarily involved insertion sequence (IS) elements, integrative conjugative element, restriction and modification systems, and some lipoproteins and transmembrane proteins. Subsequently, PG45 and HB0801 virulence in cattle was compared. Results indicated that both strains were pathogenic to cattle. The scores of gross pathological assessment for the control group, and the PG45- and HB0801-infected groups were 3, 13 and 9, respectively. Meanwhile the scores of lung lesion for these three groups were 36, 70, and 69, respectively. In addition, immunohistochemistry detection demonstrated that both strains were similarly distributed in lungs and lymph nodes. Although PG45 showed slightly higher virulence in calves than HB0801, there was no statistical difference between the strains (P>0.05). Compared to Hubei-1, a total of 122 SNP loci were disclosed in HB0801. In conclusion, although genomic plasticity was thought to be an evolutionary advantage, it did not apparently affect virulence of M. bovis strains in cattle

    Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (<it>Pinus pinaster </it>Ait.), the main conifer used for commercial plantation in southwestern Europe.</p> <p>Results</p> <p>We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 <it>in vitro </it>SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 <it>in silico </it>SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for <it>in silico </it>and <it>in vitro </it>SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a <it>Pinus taeda </it>linkage map, made it possible to align the 12 linkage groups of both species.</p> <p>Conclusions</p> <p>Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers.</p
    • 

    corecore