47 research outputs found

    Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal

    Get PDF
    Mounting evidence suggests that there is frequently considerable variation in the risk of the outcome of interest in clinical trial populations. These differences in risk will often cause clinically important heterogeneity in treatment effects (HTE) across the trial population, such that the balance between treatment risks and benefits may differ substantially between large identifiable patient subgroups; the "average" benefit observed in the summary result may even be non-representative of the treatment effect for a typical patient in the trial. Conventional subgroup analyses, which examine whether specific patient characteristics modify the effects of treatment, are usually unable to detect even large variations in treatment benefit (and harm) across risk groups because they do not account for the fact that patients have multiple characteristics simultaneously that affect the likelihood of treatment benefit. Based upon recent evidence on optimal statistical approaches to assessing HTE, we propose a framework that prioritizes the analysis and reporting of multivariate risk-based HTE and suggests that other subgroup analyses should be explicitly labeled either as primary subgroup analyses (well-motivated by prior evidence and intended to produce clinically actionable results) or secondary (exploratory) subgroup analyses (performed to inform future research). A standardized and transparent approach to HTE assessment and reporting could substantially improve clinical trial utility and interpretability

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Assessing bleeding risk in patients taking anticoagulants

    No full text
    Anticoagulant medications are commonly used for the prevention and treatment of thromboembolism. Although highly effective, they are also associated with significant bleeding risks. Numerous individual clinical factors have been linked to an increased risk of hemorrhage, including older age, anemia, and renal disease. To help quantify hemorrhage risk for individual patients, a number of clinical risk prediction tools have been developed. These risk prediction tools differ in how they were derived and how they identify and weight individual risk factors. At present, their ability to effective predict anticoagulant-associated hemorrhage remains modest. Use of risk prediction tools to estimate bleeding in clinical practice is most influential when applied to patients at the lower spectrum of thromboembolic risk, when the risk of hemorrhage will more strongly affect clinical decisions about anticoagulation. Using risk tools may also help counsel and inform patients about their potential risk for hemorrhage while on anticoagulants, and can identify patients who might benefit from more careful management of anticoagulation
    corecore