65 research outputs found

    The nonrelativistic limit of the relativistic point coupling model

    Full text link
    We relate the relativistic finite range mean-field model (RMF-FR) to the point-coupling variant and compare the nonlinear density dependence. From this, the effective Hamiltonian of the nonlinear point-coupling model in the nonrelativistic limit is derived. Different from the nonrelativistic models, the nonlinearity in the relativistic models automatically yields contributions in the form of a weak density dependence not only in the central potential but also in the spin-orbit potential. The central potential affects the bulk and surface properties while the spin-orbit potential is crucial for the shell structure of finite nuclei. A modification in the Skyrme-Hartree-Fock model with a density-dependent spin-orbit potential inspired by the point-coupling model is suggested.Comment: 21 pages, latex, 1 eps figure. accepted for publication in annals of physic

    Permeability analysis in bisized porous media: wall effect between particles of different size

    Get PDF
    The permeability of binary packings of glass beads with different size ratio – 13.3, 20, and 26.7, was investigated. In the Kozeny–Carman equation, the dependence of the tortuosity τ on the mixture porosity Δ(xD) was described according to τ = 1/Δn for different volume fraction of large particles in the mixture, xD. Obtained data on packing permeability shows that the parameter n is a function of the volume fraction and particle size ratio, with values between 0.5 and 0.4. This can be explained by the wall effect resulting from the arrangement of the small particles occurring near the large particle surface. A model taking in account this effect was suggested that can be useful in the characterization of transport phenomena in granular beds as well as in engineering applications.Fundação para a CiĂȘncia e a Tecnologia (FCT) - SFRH/BPD/18128/2004; Project POCI_EQU_58337/2004

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome

    Get PDF
    Purpose: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. Methods: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. Results: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. Conclusion: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∌40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∌2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr

    High-Level Support for Pipeline Parallelism on Many-Core Architectures

    Get PDF
    With the increasing architectural diversity of many-core architectures the challenges of parallel programming and code portability will sharply rise. The EU project PEPPHER addresses these issues with a component-based approach to application development on top of a task-parallel execution model. Central to this approach are multi-architectural components which encapsulate different implementation variants of application functionality tailored for different core types. An intelligent runtime system selects and dynamically schedules component implementation variants for efficient parallel execution on heterogeneous many-core architectures. On top of this model we have developed language, compiler and runtime support for a specific class of applications that can be expressed using the pipeline pattern. We propose C/C++ language annotations for specifying pipeline patterns and describe the associated compilation and runtime infrastructure. Experimental results indicate that with our high-level approach performance comparable to manual parallelization can be achieved
    • 

    corecore