1,385 research outputs found

    Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards

    Full text link
    We present a simple method to stabilize the optical path length of an optical fiber to an accuracy of about 1/100 of the laser wavelength. We study the dynamic response of the path length to modulation of an electrically conductive heater layer of the fiber. The path length is measured against the laser wavelength by use of the Pound-Drever-Hall method; negative feedback is applied via the heater. We apply the method in the context of a cryogenic resonator frequency standard.Comment: Expanded introduction and outlook. 9 pages, 5 figure

    A multi-wavelength survey of AGN in the XMM-LSS field: I. Quasar selection via the KX technique

    Get PDF
    AIMS: We present a sample of candidate quasars selected using the KX-technique. The data cover 0.68 deg^2 of the X-ray Multi-Mirror (XMM) Large-Scale Structure (LSS) survey area where overlapping multi-wavelength imaging data permits an investigation of the physical nature of selected sources. METHODS: The KX method identifies quasars on the basis of their optical (R and z') to near-infrared (Ks) photometry and point-like morphology. We combine these data with optical (u*,g'r',i',z') and mid-infrared (3.6-24 micron) wavebands to reconstruct the spectral energy distributions (SEDs) of candidate quasars. RESULTS: Of 93 sources selected as candidate quasars by the KX method, 25 are classified as quasars by the subsequent SED analysis. Spectroscopic observations are available for 12/25 of these sources and confirm the quasar hypothesis in each case. Even more, 90% of the SED-classified quasars show X-ray emission, a property not shared by any of the false candidates in the KX-selected sample. Applying a photometric redshift analysis to the sources without spectroscopy indicates that the 25 sources classified as quasars occupy the interval 0.7 < z < 2.5. The remaining 68/93 sources are classified as stars and unresolved galaxies.Comment: 13 pages, 9 figures, A&A 494, p. 579-589. Replaced with published version. Fig. 9 in first astro-ph submission has been update

    Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens

    Get PDF
    © 2015 Brabec et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record.

    Get PDF
    BACKGROUND: The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new 'tip-dating' and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes. RESULTS: Comprehensive ancestral state reconstructions reveal that both the ancestor of crown snakes and the ancestor of total-group snakes were nocturnal, widely foraging, non-constricting stealth hunters. They likely consumed soft-bodied vertebrate and invertebrate prey that was subequal to head size, and occupied terrestrial settings in warm, well-watered, and well-vegetated environments. The snake total-group - approximated by the Coniophis node - is inferred to have originated on land during the middle Early Cretaceous (~128.5 Ma), with the crown-group following about 20 million years later, during the Albian stage. Our inferred divergence dates provide strong evidence for a major radiation of henophidian snake diversity in the wake of the Cretaceous-Paleogene (K-Pg) mass extinction, clarifying the pattern and timing of the extant snake radiation. Although the snake crown-group most likely arose on the supercontinent of Gondwana, our results suggest the possibility that the snake total-group originated on Laurasia. CONCLUSIONS: Our study provides new insights into when, where, and how snakes originated, and presents the most complete picture of the early evolution of snakes to date. More broadly, we demonstrate the striking influence of including fossils and phenotypic data in combined analyses aimed at both phylogenetic topology inference and ancestral state reconstruction

    Modelling the orbital modulation of ultraviolet resonance lines in high-mass X-ray binaries

    Get PDF
    The stellar-wind structure in high-mass X-ray binaries (HMXBs) is investigated through modelling of their ultraviolet (UV) resonance lines. For the OB supergiants in two systems, Vela X-1 and 4U1700-37, high-resolution UV spectra are available; for Cyg X-1, SMC X-1, and LMC X-4 low-resolution spectra are used. In order to account for the non-monotonic velocity structure of the stellar wind, a modified version of the Sobolev Exact Integration (SEI) method by Lamers et al. (1987) is applied. The orbital modulation of the UV resonance lines provides information on the size of the Stroemgren zone surrounding the X-ray source. The amplitude of the observed orbital modulation (known as the Hatchett-McCray effect), however, also depends on the density- and velocity structure of the ambient wind. Model profiles are presented that illustrate the effect on the appearance of the HM effect by varying stellar-wind parameters. The q parameter of Hatchett & McCray (1977), as well as other parameters describing the supergiant's wind structure, are derived for the 5 systems. The X-ray luminosity needed to create the observed size of the Stroemgren zone is consistent with the observed X-ray flux. The derived wind parameters are compared to those determined in single OB supergiants of similar spectral type. Our models naturally explain the observed absence of the HM effect in 4U1700-37. The orbital modulation in Vela X-1 indicates that besides the Stroemgren zone other structures are present in the stellar wind (such as a photo-ionization wake). The ratio of the wind velocity and the escape velocity is found to be lower in OB supergiants in HMXBs than in single OB supergiants of the same effective temperature.Comment: 29 pages, good quality figures 11, 12, 13, A2 & B1 available upon request from JvL. Accepted for publication in Astronomy & Astrophysic

    Optimal Conservation of Migratory Species

    Get PDF
    Background. Migratory animals comprise a significant portion of biodiversity worldwide with annual investment for their conservation exceeding several billion dollars. Designing effective conservation plans presents enormous challenges. Migratory species are influenced by multiple events across land and sea-regions that are often separated by thousands of kilometres and span international borders. To date, conservation strategies for migratory species fail to take into account how migratory animals are spatially connected between different periods of the annual cycle (i.e. migratory connectivity) bringing into question the utility and efficiency of current conservation efforts. Methodology/Principal Findings. Here, we report the first framework for determining an optimal conservation strategy for a migratory species. Employing a decision theoretic approach using dynamic optimization, we address the problem of how to allocate resources for habitat conservation for a Neotropical-Nearctic migratory bird, the American redstart Setophaga ruticilla, whose winter habitat is under threat. Our first conservation strategy used the acquisition of winter habitat based on land cost, relative bird density, and the rate of habitat loss to maximize the abundance of birds on the wintering grounds. Our second strategy maximized bird abundance across the entire range of the species by adding the constraint of maintaining a minimum percentage of birds within each breeding region in North America using information on migratory connectivity as estimated from stable-hydrogen isotopes in feathers. We show that failure to take into account migratory connectivity may doom some regional populations to extinction, whereas including information on migratory connectivity results in the protection of the species across its entire range. Conclusions/Significance. We demonstrate that conservation strategies for migratory animals depend critically upon two factors: knowledge of migratory connectivity and the correct statement of the conservation problem. Our framework can be used to identify efficient conservation strategies for migratory taxa worldwide, including insects, birds, mammals, and marine organisms

    Systematic review of studies generating individual participant data on the efficacy of drugs for treating soil-transmitted helminthiases and the case for data-sharing

    Get PDF
    Preventive chemotherapy and transmission control (PCT) by mass drug administration is the cornerstone of the World Health Organization (WHO)’s policy to control soil-transmitted helminthiases (STHs) caused by Ascaris lumbricoides (roundworm), Trichuris trichiura (whipworm) and hookworm species (Necator americanus and Ancylostama duodenale) which affect over 1 billion people globally. Despite consensus that drug efficacies should be monitored for signs of decline that could jeopardise the effectiveness of PCT, systematic monitoring and evaluation is seldom implemented. Drug trials mostly report aggregate efficacies in groups of participants, but heterogeneities in design complicate classical meta-analyses of these data. Individual participant data (IPD) permit more detailed analysis of drug efficacies, offering increased sensitivity to identify atypical responses potentially caused by emerging drug resistance

    Highly Pathogenic H5N1 Avian Influenza: Entry Pathways into North America via Bird Migration

    Get PDF
    Given the possibility of highly pathogenic H5N1 avian influenza arriving in North America and monitoring programs that have been established to detect and track it, we review intercontinental movements of birds. We divided 157 bird species showing regular intercontinental movements into four groups based on patterns of movement—one of these groups (breed Holarctic, winter Eurasia) fits well with the design of the monitoring programs (i.e., western Alaska), but the other groups have quite different movement patterns, which would suggest the importance of H5N1 monitoring along the Pacific, Atlantic, and Gulf coasts of North America
    • …
    corecore