69 research outputs found

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations

    Biology and dynamics of potential malaria vectors in Southern France

    Get PDF
    BACKGROUND: Malaria is a former endemic problem in the Camargue, South East France, an area from where very few recent data concerning Anopheles are available. A study was undertaken in 2005 to establish potential malaria vector biology and dynamics and evaluate the risk of malaria re-emergence. METHODS: Mosquitoes were collected in two study areas, from March to October 2005, one week every two weeks, using light traps+CO(2), horse bait traps, human bait catch, and by collecting females in resting sites. RESULTS: Anopheles hyrcanus was the most abundant Anopheles species. Anopheles melanoon was less abundant, and Anopheles atroparvus and Anopheles algeriensis were rare. Anopheles hyrcanus and An. melanoon were present in summer, whereas An. atroparvus was present in autumn and winter. A large number of An. hyrcanus females was collected on humans, whereas almost exclusively animals attracted An. melanoon. Based on an enzyme-linked immunosorbent assay, almost 90% of An. melanoon blood meals analysed had been taken on horse or bovine. Anopheles hyrcanus and An. melanoon parity rates showed huge variations according to the date and the trapping method. CONCLUSION: Anopheles hyrcanus seems to be the only Culicidae likely to play a role in malaria transmission in the Camargue, as it is abundant and anthropophilic

    Temperature, Viral Genetics, and the Transmission of West Nile Virus by Culex pipiens Mosquitoes

    Get PDF
    The distribution and intensity of transmission of vector-borne pathogens can be strongly influenced by the competence of vectors. Vector competence, in turn, can be influenced by temperature and viral genetics. West Nile virus (WNV) was introduced into the United States of America in 1999 and subsequently spread throughout much of the Americas. Previously, we have shown that a novel genotype of WNV, WN02, first detected in 2001, spread across the US and was more efficient than the introduced genotype, NY99, at infecting, disseminating, and being transmitted by Culex mosquitoes. In the current study, we determined the relationship between temperature and time since feeding on the probability of transmitting each genotype of WNV. We found that the advantage of the WN02 genotype increases with the product of time and temperature. Thus, warmer temperatures would have facilitated the invasion of the WN02 genotype. In addition, we found that transmission of WNV accelerated sharply with increasing temperature, T, (best fit by a function of T4) showing that traditional degree-day models underestimate the impact of temperature on WNV transmission. This laboratory study suggests that both viral evolution and temperature help shape the distribution and intensity of transmission of WNV, and provides a model for predicting the impact of temperature and global warming on WNV transmission

    The pre-history of health psychology in the UK: From natural science and psychoanalysis to social science, social cognition and beyond

    Get PDF
    Health psychology formally came of age in the United Kingdom in the 1980s, but it was prefigured by much discussion about challenges to the dominance of biomedicine in healthcare and debates. This articles focuses on what could be termed the pre-history of health psychology in the UK. This was the period in the earlier 20th century when psychological approaches were dominated by psychoanalysis which was followed by behaviourism and then cognitivism. Review of this pre-history provides the backdrop for the rise of health psychology in the UK and also reveals the tensions between the different theoretical perspectives

    Molecular identification of Palearctic members of Anopheles maculipennis in northern Iran

    Get PDF
    BACKGROUND: Members of Anopheles maculipennis complex are effective malaria vectors in Europe and the Caspian Sea region in northern Iran, where malaria has been re-introduced since 1994. The current study has been designed in order to provide further evidence on the status of species composition and to identify more accurately the members of the maculipennis complex in northern Iran. METHODS: The second internal transcribed spacer of ribosomal DNA (rDNA-ITS2) was sequenced in 28 out of 235 specimens that were collected in the five provinces of East Azerbayjan, Ardebil, Guilan, Mazandaran and Khorassan in Iran. RESULTS: The length of the ITS2 ranged from 283 to 302 bp with a GC content of 49.33 – 54.76%. No intra-specific variations were observed. Construction of phylogenetic tree based on the ITS2 sequence revealed that the six Iranian members of the maculipennis complex could be easily clustered into three groups: the An. atroparvus – Anopheles labranchiae group; the paraphyletic group of An. maculipennis, An. messeae, An. persiensis; and An. sacharovi as the third group. CONCLUSION: Detection of three species of the An. maculipennis complex including An. atroparvus, An. messae and An. labranchiae, as shown as new records in northern Iran, is somehow alarming. A better understanding of the epidemiology of malaria on both sides of the Caspian Sea may be provided by applying the molecular techniques to the correct identification of species complexes, to the detection of Plasmodium composition in Anopheles vectors and to the status of insecticide resistance by looking to related genes

    Climate-Based Models for Understanding and Forecasting Dengue Epidemics

    Get PDF
    Dengue fever is a major public health problem in the tropics and subtropics. Since no vaccine exists, understanding and predicting outbreaks remain of crucial interest. Climate influences the mosquito-vector biology and the viral transmission cycle. Its impact on dengue dynamics is of growing interest. We analyzed the epidemiology of dengue in Noumea (New Caledonia) from 1971 to 2010 and its relationships with local and remote climate conditions using an original approach combining a comparison of epidemic and non epidemic years, bivariate and multivariate analyses. We found that the occurrence of outbreaks in Noumea was strongly influenced by climate during the last forty years. Efficient models were developed to estimate the yearly risk of outbreak as a function of two meteorological variables that were contemporaneous (explicative model) or prior (predictive model) to the outbreak onset. Local threshold values of maximal temperature and relative humidity were identified. Our results provide new insights to understand the link between climate and dengue outbreaks, and have a substantial impact on dengue management in New Caledonia since the health authorities have integrated these models into their decision making process and vector control policies. This raises the possibility to provide similar early warning systems in other countries

    Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence

    Get PDF
    Dengue is the most rapidly spreading mosquito-borne viral disease in the world and approximately 2.5 billion people live in dengue endemic countries. In Brazil it is mainly transmitted by Aedes aegypti mosquitoes. The wide clinical spectrum ranges from asymptomatic infections or mild illness, to the more severe forms of infection such as dengue hemorrhagic fever or dengue shock syndrome. The spread and dramatic increase in the occurrence of dengue cases in tropical and subtropical countries has been blamed on uncontrolled urbanization, population growth and international traveling. Vaccines are under development and the only current disease control strategy is trying to keep the vector quantity at the lowest possible levels. Mathematical models have been developed to help understand the disease's epidemiology. These models aim not only to predict epidemics but also to expand the capacity of phenomena explanation. We developed a spatially explicit model to simulate the dengue transmission in a densely populated area. The model involves the dynamic interactions between humans and mosquitoes and takes into account human mobility as an important factor of disease spread. We investigated the importance of human population size, human renewal rate, household infestation and ratio of vectors per person in the maintenance of sustained viral circulation

    Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment

    Get PDF
    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments
    corecore