2,234 research outputs found

    Injury to the Superior Gluteal Artery during Intramedullary Fixation of a Proximal Femoral Fracture - A Case Report

    Get PDF
    Proximal femoral fractures represent a health problem of global proportions. Iatrogenic vascular lesion in the treatment of these fractures is an unusual potentially lethal complication, reported in only 0.2% of trochanteric fractures treated with intramedullary implants. Superior gluteal artery injury is extremely rare, with only two cases reported in literature.info:eu-repo/semantics/publishedVersio

    Screening of yeasts capable of producing cellulase-free xylanase

    Get PDF
    Xylanases have largely been obtained from filamentous fungi and bacteria; few studies have investigated the production of this enzyme by yeasts. The aim of this study was to isolate yeasts from different sources, such as vegetables, cereal grains, fruits, and agro-industrial waste and to obtain yeasts capable of producing celulase-free xylanase. Samples were enriched using yeast malt broth, and yeasts were isolated on Wallerstein nutrient agar. In all, 119 yeast strains were isolated and evaluated in terms of their ability to degrade xylan, which was found in the medium by using agar degradation halos, the basis of this polysaccharide, and Congo red dye. Selected microorganisms were grown in complex medium and the enzymatic activities of endo-xylanase, β-xylosidase, carboxymetilcellulase, and filter paper cellulose were determined over 96 h of cultivation; the pH and biomass concentration were also evaluated. The yeast strain 18Y, which was isolated from chicory and later identified as Cryptococcus laurentii, showed the highest endo-xylanase activity (2.7 U.mL-1). This strain had the ability to produce xylanase with low levels of cellulase production (both CMCase [0.11 U.mL-1] and FPase [0.10 U.mL-1]). This result gives this strain great biotechnological potential since this enzyme can be used for industrial pulp and paper bleaching.Key words: Cryptococcus laurentii, endo-xylanase, xylan

    TRSP is dispensable for the Plasmodium pre-erythrocytic phase

    Get PDF
    Plasmodium sporozoites deposited in the skin following a mosquito bite must migrate and invade blood vessels to complete their development in the liver. Once in the bloodstream, sporozoites arrest in the liver sinusoids, but the molecular determinants that mediate this specific homing are not yet genetically defined. Here we investigate the involvement of the thrombospondin-related sporozoite protein (TRSP) in this process using knockout Plasmodium berghei parasites and in vivo bioluminescence imaging in mice. Resorting to a homing assay, trsp knockout sporozoites were found to arrest in the liver similar to control parasites. Moreover, we found no defects in the establishment of infection in mice following inoculation of trsp knockout sporozoites via intravenous and cutaneous injection or mosquito bite. Accordingly, mutant sporozoites were also able to successfully invade hepatocytes in vitro. Altogether, these results suggest TRSP may have a redundant role in the completion of the pre-erythrocytic phase of the malaria parasite. Nonetheless, identifying molecules with paramount roles in this phase could aid in the search for new antigens needed for the design of a protective vaccine against malaria.We would like to thank: Prof. Anabela Cordeiro da Silva from the IBMC/i3S for the exceptional hosting conditions; Dr. Ana Xavier Carvalho from the IBMC/i3S for the critical reading of the manuscript; the team of the CEPIA from Institut Pasteur, Paris, for providing the Anopheles stephensi female mosquitos. The following reagents were obtained through BEI Resources, NIAID, NIH: (a) Plasmid pL0001, for Transfection in Plasmodium berghei, MRA-770, contributed by Andrew P. Waters; (b) Hybridoma 3D11 Anti-Plasmodium berghei 44-Kilodalton Sporozoite Surface Protein (Pb44), MRA-100, contributed by Victor Nussenzweig. This work was supported by funds from project Norte-01-0145-FEDER-000012 - Structured program on bioengineered therapies for infectious diseases and tissue regeneration, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through FEDER. This work also received funds from the Fundação para a Ciência e Tecnologia (FCT)/Ministério da Educação e Ciência (MEC) co-funded by FEDER (EXPL/JTAVARES-IF/00881/2012/CP0158/CT0005,EXPL/IMI-MIC/1331/ 2013) under the Partnership agreement PT2020, through the Research Unit No. 4293. J.T. is an Investigator FCT funded by National funds through FCT and co-funded through European Social Fund within the Human Potential Operating Programme. D.M.C., M.S. and A.R.T. are funded by FCT individual fellowships SFRH/ BD/123734/2016, SFRH/BD/133485/2017 and SFRH/BD/133276/2017 respectively). The authors acknowledge the support of the BioSciences Screening i3S Scientific Platform, member of the PPBI (PPBI-POCI-01-0145-FEDER-022122)

    Profiling the circulating miRnome reveals a temporal regulation of the bone injury response

    Get PDF
    Bone injury healing is an orchestrated process that starts with an inflammatory phase followed by repair and remodelling of the bone defect. The initial inflammation is characterized by local changes in immune cell populations and molecular mediators, including microRNAs (miRNAs). However, the systemic response to bone injury remains largely uncharacterized. Thus, this study aimed to profile the changes in the plasma miRnome after bone injury and determine its biological implications. Methods: A rat model of femoral bone defect was used, and animals were evaluated at days 3 and 14 after injury. Non-operated (NO) and sham operated animals were used as controls. Blood and spleen were collected and peripheral blood mononuclear cells (PBMC) and plasma were separated. Plasma miRnome was determined by RT-qPCR array and bioinformatics Ingenuity pathway analysis (IPA) was performed. Proliferation of bone marrow mesenchymal stem/stromal cells (MSC) was evaluated by Ki67 staining and high-throughput cell imaging. Candidate miRNAs were evaluated in splenocytes by RT-qPCR, and proteins found in the IPA analysis were analysed in splenocytes and PBMC by Western blot. Results: Bone injury resulted in timely controlled changes to the miRNA expression profile in plasma. At day 3 there was a major down-regulation of miRNA levels, which was partially recovered by day 14 post-injury. Interestingly, bone injury led to a significant up-regulation of let-7a, let-7d and miR-21 in plasma and splenocytes at day 14 relative to day 3 after bone injury, but not in sham operated animals. IPA predicted that most miRNAs temporally affected were involved in cellular development, proliferation and movement. MSC proliferation was analysed and found significantly increased in response to plasma of animals days 3 and 14 post-injury, but not from NO animals. Moreover, IPA predicted that miRNA processing proteins Ago2 and Dicer were specifically inhibited at day 3 post-injury, with Ago2 becoming activated at day 14. Protein levels of Ago2 and Dicer in splenocytes were increased at day 14 relative to day 3 post-bone injury and NO animals, while in PBMC, levels were reduced at day 3 (albeit Dicer was not significant) and remained low at day 14. Ephrin receptor B6 followed the same tendency as Ago2 and Dicer, while Smad2/3 was significantly decreased in splenocytes from day 14 relative to NO and day 3 post-bone injury animals. Conclusion: Results show a systemic miRNA response to bone injury that is regulated in time and is related to inflammation resolution and the start of bone repair/regeneration, unravelling candidate miRNAs to be used as biomarkers in the monitoring of healthy bone healing and as therapeutic targets for the development of improved bone regeneration therapies.This work was funded by project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and AO Foundation-Switzerland (project S-15-83S). AMS, MIA, CC and JHT were supported by FCT-Fundação para a Ciência e a Tecnologia, through fellowships SFRH/BD/ 85968/2012, SFRH/BPD/91011/2012, SFRH/BDP/ 87071/2012 and SFRH/BD/112832/2015, respecttively. Work in Dr. Calin's laboratory is supported by National Institutes of Health (NIH/NCATS) grant UH3TR00943-01 through the NIH Common Fund, Office of Strategic Coordination (OSC), the NIH/NCI grant 1R01CA182905-01, a U54 grant-UPR/MDACC Partnership for Excellence in Cancer Research 2016 Pilot Project, a Team DOD (CA160445P1) grant, a Ladies Leukemia League grant, a CLL Moonshot Flagship project, a SINF 2017 grant, and the Estate of C. G. Johnson, J

    Assessing the Health of Richibucto Estuary with the Latent Health Factor Index

    Get PDF
    The ability to quantitatively assess the health of an ecosystem is often of great interest to those tasked with monitoring and conserving ecosystems. For decades, research in this area has relied upon multimetric indices of various forms. Although indices may be numbers, many are constructed based on procedures that are highly qualitative in nature, thus limiting the quantitative rigour of the practical interpretations made from these indices. The statistical modelling approach to construct the latent health factor index (LHFI) was recently developed to express ecological data, collected to construct conventional multimetric health indices, in a rigorous quantitative model that integrates qualitative features of ecosystem health and preconceived ecological relationships among such features. This hierarchical modelling approach allows (a) statistical inference of health for observed sites and (b) prediction of health for unobserved sites, all accompanied by formal uncertainty statements. Thus far, the LHFI approach has been demonstrated and validated on freshwater ecosystems. The goal of this paper is to adapt this approach to modelling estuarine ecosystem health, particularly that of the previously unassessed system in Richibucto in New Brunswick, Canada. Field data correspond to biotic health metrics that constitute the AZTI marine biotic index (AMBI) and abiotic predictors preconceived to influence biota. We also briefly discuss related LHFI research involving additional metrics that form the infaunal trophic index (ITI). Our paper is the first to construct a scientifically sensible model to rigorously identify the collective explanatory capacity of salinity, distance downstream, channel depth, and silt-clay content --- all regarded a priori as qualitatively important abiotic drivers --- towards site health in the Richibucto ecosystem.Comment: On 2013-05-01, a revised version of this article was accepted for publication in PLoS One. See Journal reference and DOI belo

    Electrospinning polypropylene with an amino acid as a strategy to bind the antimicrobial peptide Cys-LC-LL-37

    Get PDF
    Hospital isolation gowns are increasingly competitive, with brands and manufacturers contesting consumer preferences. The textile materials in contact with the skin can acquire secretions and multiresistant microorganisms, causing discomfort and health risks, respectively. A new nanofibrous substrate---polypropylene grafted with l-Cys---was developed with an increased crystallinity, providing its surface with --SH hooks necessary to efficiently cross-link the antimicrobial peptide Cys-LC-LL-37 in order to protect against nosocomial pathogens and their spread to community. Furthermore, this application does not require environmental control of humidity, and it is not susceptible to enzyme and microorganism degradation.The authors acknowledge the Fundação para a Ciência e Tecnologia (FCT) for the PhD Grant SFRH/ BD/91444/2012 and Programa Operacional Capital Humano (POCH) and European Union for co-funding the work.info:eu-repo/semantics/publishedVersio

    Myeloid Sirtuin 2 expression does not impact long-term Mycobacterium tuberculosis control

    Get PDF
    Sirtuins (Sirts) regulate several cellular mechanisms through deacetylation of several transcription factors and enzymes. Recently, Sirt2 was shown to prevent the development of inflammatory processes and its expression favors acute Listeria monocytogenes infection. The impact of this molecule in the context of chronic infections remains unknown. We found that specific Sirt2 deletion in the myeloid lineage transiently increased Mycobacterium tuberculosis load in the lungs and liver of conditional mice. Sirt2 did not affect long-term infection since no significant differences were observed in the bacterial burden at days 60 and 120 post-infection. The initial increase in M. tuberculosis growth was not due to differences in inflammatory cell infiltrates in the lung, myeloid or CD4+ T cells. The transcription levels of IFN-?, IL-17, TNF, IL-6 and NOS2 were also not affected in the lungs by Sirt2-myeloid specific deletion. Overall, our results demonstrate that Sirt2 expression has a transitory effect in M. tuberculosis infection. Thus, modulation of Sirt2 activity in vivo is not expected to affect chronic infection with M. tuberculosis.Fundação para a Ciência e Tecnologia, Portugal and cofunded by Programa Operacional Regional do Norte (ON.2–O Novo Norte), Quadro de Referência Estratégico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER). Project grants: PTDC/SAU-MII/101977/2008 (to AGC) and PTDC/BIA-BCM/102776/2008 (to MS). LMT was supported by FCT Grant SFRH/BPD/77399/20

    Effect of manipulation of primary tumour vascularity on metastasis in an adenocarcinoma model

    Get PDF
    One explanation for the clinical association between tumour vascularity and probability of metastasis is that increased primary tumour vascularity enhances haematogenous dissemination by offering greater opportunity for tumour cell invasion into the circulation (intravasation). We devised an experimental tumour metastasis model that allowed manipulation of primary tumour vascularity with differential exposure of the primary and metastatic tumour site to angiogenic agents. We used this model to assess the effects of local and systemic increases in the level of the angiogenic agent basic fibroblast growth factor on metastasis. BDIX rats with implanted hind limb K12/TR adenocarcinoma tumours received either intratumoural or systemic, basic fibroblast growth factor or saline infusion. Both intratumoural and systemic basic fibroblast growth factor infusion resulted in significant increases in tumour vascularity, blood flow and growth, but not lung metastasis, compared with saline-infused controls. Raised basic fibroblast growth factor levels and increase in primary tumour vascularity did not increase metastasis. The clinical association between tumour vascularity and metastasis is most likely to arise from a metastatic tumour genotype that links increased tumour vascularity with greater metastatic potential

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
    corecore