The ability to quantitatively assess the health of an ecosystem is often of
great interest to those tasked with monitoring and conserving ecosystems. For
decades, research in this area has relied upon multimetric indices of various
forms. Although indices may be numbers, many are constructed based on
procedures that are highly qualitative in nature, thus limiting the
quantitative rigour of the practical interpretations made from these indices.
The statistical modelling approach to construct the latent health factor index
(LHFI) was recently developed to express ecological data, collected to
construct conventional multimetric health indices, in a rigorous quantitative
model that integrates qualitative features of ecosystem health and preconceived
ecological relationships among such features. This hierarchical modelling
approach allows (a) statistical inference of health for observed sites and (b)
prediction of health for unobserved sites, all accompanied by formal
uncertainty statements. Thus far, the LHFI approach has been demonstrated and
validated on freshwater ecosystems. The goal of this paper is to adapt this
approach to modelling estuarine ecosystem health, particularly that of the
previously unassessed system in Richibucto in New Brunswick, Canada. Field data
correspond to biotic health metrics that constitute the AZTI marine biotic
index (AMBI) and abiotic predictors preconceived to influence biota. We also
briefly discuss related LHFI research involving additional metrics that form
the infaunal trophic index (ITI). Our paper is the first to construct a
scientifically sensible model to rigorously identify the collective explanatory
capacity of salinity, distance downstream, channel depth, and silt-clay content
--- all regarded a priori as qualitatively important abiotic drivers ---
towards site health in the Richibucto ecosystem.Comment: On 2013-05-01, a revised version of this article was accepted for
publication in PLoS One. See Journal reference and DOI belo